IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v27y2022i3d10.1007_s11027-022-09995-4.html
   My bibliography  Save this article

Projecting future changes in extreme climate for maize production in the North China Plain and the role of adjusting the sowing date

Author

Listed:
  • Dengpan Xiao

    (College of Geography Science, Hebei Normal University
    Hebei Laboratory of Environmental Evolution and Ecological Construction
    Engineering Technology Research Center, Geographic Information Development and Application of Hebei, Institute of Geographical Sciences, Hebei Academy of Sciences)

  • Huizi Bai

    (Engineering Technology Research Center, Geographic Information Development and Application of Hebei, Institute of Geographical Sciences, Hebei Academy of Sciences)

  • De Li Liu

    (NSW Department of Primary Industries, Wagga Wagga Agricultural Institute
    University of New South Wales)

  • Jianzhao Tang

    (Engineering Technology Research Center, Geographic Information Development and Application of Hebei, Institute of Geographical Sciences, Hebei Academy of Sciences)

  • Bin Wang

    (NSW Department of Primary Industries, Wagga Wagga Agricultural Institute)

  • Yanjun Shen

    (Key Laboratory for Agricultural Water Resources, Hebei Key Laboratory for Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences
    University of the Chinese Academy of Sciences)

  • Jiansheng Cao

    (Key Laboratory for Agricultural Water Resources, Hebei Key Laboratory for Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences)

  • Puyu Feng

    (China Agricultural University)

Abstract

The increase of extreme climate events under a warming climate has and will continue to threaten the growth and development of maize across the North China Plain (NCP). Understanding and assessing the spatiotemporal changes of future extreme climate events during the maize growth period are essential for developing adaptation strategies to reduce the risks of climate to maize productivity under future climate change. In this study, we applied statistically downscaled climate data from 20 global climate models (GCMs) and two Shared Socioeconomic Pathways (SSP245 and SSP585) for 52 stations in the NCP and investigated the future changes of 6 extreme climate indices (ECIs) during different maize growth periods that are sensitive to maize yield. The change in maize phenology under future climate scenarios was simulated by the well-validated APSIM-maize model. Moreover, we selected the independence weighted mean (IWM) method to evaluate the performance of 20 GCMs in reproducing historical changes in ECIs. The results from IWM could better reproduce historical changes of ECIs than any individual GCM and multi-model arithmetic mean. We found that the intensity and frequency of extreme high temperature indices during the maize growth period were projected to increase over the twenty-first century for both SSP245 and SSP585 across the NCP. There was no significant change in extreme precipitation index (R20). The consecutive wet days (CWD) significantly increased, while the consecutive dry days (CDD) slightly decreased over the twenty-first century. To mitigate and adapt the impacts of future extreme climate on maize growth, we found adjustment of sowing date (SD) had important effects on ECIs, especially on the extreme high temperature indices. Overall, a proper delay of SD could greatly reduce the occurrence of extreme heat stress on maize production under both scenarios. We expect these climate extreme projections will provide helpful information to optimize climate resources in the NCP to better adapt future climate change.

Suggested Citation

  • Dengpan Xiao & Huizi Bai & De Li Liu & Jianzhao Tang & Bin Wang & Yanjun Shen & Jiansheng Cao & Puyu Feng, 2022. "Projecting future changes in extreme climate for maize production in the North China Plain and the role of adjusting the sowing date," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(3), pages 1-21, March.
  • Handle: RePEc:spr:masfgc:v:27:y:2022:i:3:d:10.1007_s11027-022-09995-4
    DOI: 10.1007/s11027-022-09995-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-022-09995-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-022-09995-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David B. Lobell & Adam Sibley & J. Ivan Ortiz-Monasterio, 2012. "Extreme heat effects on wheat senescence in India," Nature Climate Change, Nature, vol. 2(3), pages 186-189, March.
    2. Xiao, Dengpan & Liu, De Li & Wang, Bin & Feng, Puyu & Waters, Cathy, 2020. "Designing high-yielding maize ideotypes to adapt changing climate in the North China Plain," Agricultural Systems, Elsevier, vol. 181(C).
    3. Dengpan Xiao & Juana Moiwo & Fulu Tao & Yonghui Yang & Yanjun Shen & Quanhong Xu & Jianfeng Liu & He Zhang & Fengshan Liu, 2015. "Spatiotemporal variability of winter wheat phenology in response to weather and climate variability in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1191-1202, October.
    4. McCown, R. L. & Hammer, G. L. & Hargreaves, J. N. G. & Holzworth, D. P. & Freebairn, D. M., 1996. "APSIM: a novel software system for model development, model testing and simulation in agricultural systems research," Agricultural Systems, Elsevier, vol. 50(3), pages 255-271.
    5. Zunfu Lv & Feifei Li & Guoquan Lu, 2020. "Adjusting sowing date and cultivar shift improve maize adaption to climate change in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(1), pages 87-106, January.
    6. Zhao Zhang & Yi Chen & Pin Wang & Shuai Zhang & Fulu Tao & Xiaofei Liu, 2014. "Spatial and temporal changes of agro-meteorological disasters affecting maize production in China since 1990," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 2087-2100, April.
    7. David B. Lobell & Graeme L. Hammer & Greg McLean & Carlos Messina & Michael J. Roberts & Wolfram Schlenker, 2013. "The critical role of extreme heat for maize production in the United States," Nature Climate Change, Nature, vol. 3(5), pages 497-501, May.
    8. De Liu & Heping Zuo, 2012. "Statistical downscaling of daily climate variables for climate change impact assessment over New South Wales, Australia," Climatic Change, Springer, vol. 115(3), pages 629-666, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanxi Zhao & Dengpan Xiao & Huizi Bai & Jianzhao Tang & De Li Liu & Yongqing Qi & Yanjun Shen, 2022. "The Prediction of Wheat Yield in the North China Plain by Coupling Crop Model with Machine Learning Algorithms," Agriculture, MDPI, vol. 13(1), pages 1-19, December.
    2. Yanxi Zhao & Dengpan Xiao & Huizi Bai & Jianzhao Tang & Deli Liu, 2022. "Future Projection for Climate Suitability of Summer Maize in the North China Plain," Agriculture, MDPI, vol. 12(3), pages 1-20, February.
    3. Zhang, Qi & Yu, Xin & Qiu, Rangjian & Liu, Zhongxian & Yang, Zaiqiang, 2022. "Evolution, severity, and spatial extent of compound drought and heat events in north China based on copula model," Agricultural Water Management, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    2. Yanxi Zhao & Dengpan Xiao & Huizi Bai & Jianzhao Tang & Deli Liu, 2022. "Future Projection for Climate Suitability of Summer Maize in the North China Plain," Agriculture, MDPI, vol. 12(3), pages 1-20, February.
    3. Kamal Kumar Murari & Sandeep Mahato & T. Jayaraman & Madhura Swaminathan, 2018. "Extreme Temperatures and Crop Yields in Karnataka, India," Journal, Review of Agrarian Studies, vol. 8(2), pages 92-114, July-Dece.
    4. Xiao, Dengpan & Liu, De Li & Wang, Bin & Feng, Puyu & Bai, Huizi & Tang, Jianzhao, 2020. "Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios," Agricultural Water Management, Elsevier, vol. 238(C).
    5. Xiao, Dengpan & Liu, De Li & Wang, Bin & Feng, Puyu & Waters, Cathy, 2020. "Designing high-yielding maize ideotypes to adapt changing climate in the North China Plain," Agricultural Systems, Elsevier, vol. 181(C).
    6. Joshua D. Woodard & Leslie J. Verteramo‐Chiu, 2017. "Efficiency Impacts of Utilizing Soil Data in the Pricing of the Federal Crop Insurance Program," American Journal of Agricultural Economics, John Wiley & Sons, vol. 99(3), pages 757-772, April.
    7. Hasan Gökhan Doğan & Arzu Kan, 2019. "The effect of precipitation and temperature on wheat yield in Turkey: a panel FMOLS and panel VECM approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(1), pages 447-460, February.
    8. Kung, Chih-Chun, 2019. "A stochastic evaluation of economic and environmental effects of Taiwan's biofuel development under climate change," Energy, Elsevier, vol. 167(C), pages 1051-1064.
    9. Taoyuan Wei & Tianyi Zhang & Karianne De Bruin & Solveig Glomrød & Qinghua Shi, 2016. "Extreme Weather Impacts on Maize Yield: The Case of Shanxi Province in China," Sustainability, MDPI, vol. 9(1), pages 1-12, December.
    10. Kung, Chih-Chun & Zhang, Ning & Choi, Yongrok & Xiong, Kai & Yu, Jiangli, 2019. "Effectiveness of crop residuals in ethanol and pyrolysis-based electricity production: A stochastic analysis under uncertain climate impacts," Energy Policy, Elsevier, vol. 125(C), pages 267-276.
    11. Quan, Hao & Ding, Dianyuan & Wu, Lihong & Qiao, Ruonan & Dong, Qin'ge & Zhang, Tibin & Feng, Hao & Wu, Lianhai & Siddique, Kadambot H.M., 2022. "Future climate change impacts on mulched maize production in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 266(C).
    12. Ke Liu & Matthew Tom Harrison & Haoliang Yan & De Li Liu & Holger Meinke & Gerrit Hoogenboom & Bin Wang & Bin Peng & Kaiyu Guan & Jonas Jaegermeyr & Enli Wang & Feng Zhang & Xiaogang Yin & Sotirios Ar, 2023. "Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Xiao, Dengpan & Liu, De Li & Feng, Puyu & Wang, Bin & Waters, Cathy & Shen, Yanjun & Qi, Yongqing & Bai, Huizi & Tang, Jianzhao, 2021. "Future climate change impacts on grain yield and groundwater use under different cropping systems in the North China Plain," Agricultural Water Management, Elsevier, vol. 246(C).
    14. Jeetendra Prakash Aryal & Cathy R. Farnworth & Ritika Khurana & Srabashi Ray & Tek B. Sapkota & Dil Bahadur Rahut, 2020. "Does women’s participation in agricultural technology adoption decisions affect the adoption of climate‐smart agriculture? Insights from Indo‐Gangetic Plains of India," Review of Development Economics, Wiley Blackwell, vol. 24(3), pages 973-990, August.
    15. Timothy Neal & Michael Keane, 2018. "The Impact of Climate Change on U.S. Agriculture: The Roles of Adaptation Techniques and Emissions Reductions," Discussion Papers 2018-08, School of Economics, The University of New South Wales.
    16. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    17. Balázs Varga & Zsuzsanna Farkas & Emese Varga-László & Gyula Vida & Ottó Veisz, 2022. "Elevated Atmospheric CO 2 Concentration Influences the Rooting Habits of Winter-Wheat ( Triticum aestivum L.) Varieties," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    18. Shekhar, Ankit & Shapiro, Charles A., 2022. "Prospective crop yield and income return based on a retrospective analysis of a long-term rainfed agriculture experiment in Nebraska," Agricultural Systems, Elsevier, vol. 198(C).
    19. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    20. Buddhika Patalee & Glynn T. Tonsor, 2021. "Weather effects on U.S. cow‐calf production: A long‐term panel analysis," Agribusiness, John Wiley & Sons, Ltd., vol. 37(4), pages 838-857, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:27:y:2022:i:3:d:10.1007_s11027-022-09995-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.