Author
Abstract
This paper outlines a new statistical downscaling method based on a stochastic weather generator. The monthly climate projections from global climate models (GCMs) are first downscaled to specific sites using an inverse distance-weighted interpolation method. A bias correction procedure is then applied to the monthly GCM values of each site. Daily climate projections for the site are generated by using a stochastic weather generator, WGEN. For downscaling WGEN parameters, historical climate data from 1889 to 2008 are sorted, in an ascending order, into 6 climate groups. The WGEN parameters are downscaled based on the linear and non-linear relationships derived from the 6 groups of historical climates and future GCM projections. The overall averaged confidence intervals for these significant linear relationships between parameters and climate variables are 0.08 and 0.11 (the range of these parameters are up to a value of 1.0) at the observed mean and maximum values of climate variables, revealing a high confidence in extrapolating parameters for downscaling future climate. An evaluation procedure is set up to ensure that the downscaled daily sequences are consistent with monthly GCM output in terms of monthly means or totals. The performance of this model is evaluated through the comparison between the distributions of measured and downscaled climate data. Kruskall-Wallis rank (K-W) and Siegel-Tukey rank sum dispersion (S-T) tests are used. The results show that the method can reproduce the climate statistics at annual, monthly and daily time scales for both training and validation periods. The method is applied to 1062 sites across New South Wales (NSW) for 9 GCMs and three IPCC SRES emission scenarios, B1, A1B and A2, for the period of 1900–2099. Projected climate changes by 7 GCMs are also analyzed for the A2 emission scenario based on the downscaling results. Copyright Springer Science+Business Media B.V. 2012
Suggested Citation
De Liu & Heping Zuo, 2012.
"Statistical downscaling of daily climate variables for climate change impact assessment over New South Wales, Australia,"
Climatic Change, Springer, vol. 115(3), pages 629-666, December.
Handle:
RePEc:spr:climat:v:115:y:2012:i:3:p:629-666
DOI: 10.1007/s10584-012-0464-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:115:y:2012:i:3:p:629-666. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.