IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36129-4.html
   My bibliography  Save this article

Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates

Author

Listed:
  • Ke Liu

    (University of Tasmania
    Yangtze University)

  • Matthew Tom Harrison

    (University of Tasmania)

  • Haoliang Yan

    (State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences)

  • De Li Liu

    (New South Wales Department of Primary Industries, Wagga Wagga Agricultural Institute
    University of New South Wales)

  • Holger Meinke

    (University of Tasmania)

  • Gerrit Hoogenboom

    (University of Florida)

  • Bin Wang

    (New South Wales Department of Primary Industries, Wagga Wagga Agricultural Institute)

  • Bin Peng

    (University of Illinois at Urbana Champaign
    University of Illinois at Urbana Champaign
    University of Illinois at Urbana Champaign)

  • Kaiyu Guan

    (University of Illinois at Urbana Champaign
    University of Illinois at Urbana Champaign
    University of Illinois at Urbana Champaign)

  • Jonas Jaegermeyr

    (NASA Goddard Institute for Space Studies
    Columbia University, Center for Climate Systems Research
    Potsdam Institute for Climate Impacts Research (PIK), Member of the Leibniz Association)

  • Enli Wang

    (Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food)

  • Feng Zhang

    (Lanzhou University)

  • Xiaogang Yin

    (China Agricultural University)

  • Sotirios Archontoulis

    (Iowa State University)

  • Lixiao Nie

    (Hainan University)

  • Ana Badea

    (Brandon Research and Development Centre, Agriculture and Agri-Food Canada)

  • Jianguo Man

    (Huazhong Agricultural University)

  • Daniel Wallach

    (National Institute for Agricultural Research (INRAE), UMR AGIR)

  • Jin Zhao

    (China Agricultural University)

  • Ana Borrego Benjumea

    (Brandon Research and Development Centre, Agriculture and Agri-Food Canada)

  • Shah Fahad

    (Abdul Wali Khan University Mardan)

  • Xiaohai Tian

    (Yangtze University)

  • Weilu Wang

    (Yangzhou University)

  • Fulu Tao

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences
    Natural Resources Institute Finland (Luke))

  • Zhao Zhang

    (Beijing Normal University)

  • Reimund Rötter

    (University of Göttingen, Tropical Plant Production and Agricultural Systems Modelling (TROPAGS))

  • Youlu Yuan

    (State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences)

  • Min Zhu

    (Brandon Research and Development Centre, Agriculture and Agri-Food Canada)

  • Panhong Dai

    (School of Computer Science & Information Engineering, Anyang Institute of Technology)

  • Jiangwen Nie

    (China Agricultural University)

  • Yadong Yang

    (China Agricultural University)

  • Yunbo Zhang

    (Yangtze University)

  • Meixue Zhou

    (University of Tasmania)

Abstract

Extreme weather events threaten food security, yet global assessments of impacts caused by crop waterlogging are rare. Here we first develop a paradigm that distils common stress patterns across environments, genotypes and climate horizons. Second, we embed improved process-based understanding into a farming systems model to discern changes in global crop waterlogging under future climates. Third, we develop avenues for adapting cropping systems to waterlogging contextualised by environment. We find that yield penalties caused by waterlogging increase from 3–11% historically to 10–20% by 2080, with penalties reflecting a trade-off between the duration of waterlogging and the timing of waterlogging relative to crop stage. We document greater potential for waterlogging-tolerant genotypes in environments with longer temperate growing seasons (e.g., UK, France, Russia, China), compared with environments with higher annualised ratios of evapotranspiration to precipitation (e.g., Australia). Under future climates, altering sowing time and adoption of waterlogging-tolerant genotypes reduces yield penalties by 18%, while earlier sowing of winter genotypes alleviates waterlogging by 8%. We highlight the serendipitous outcome wherein waterlogging stress patterns under present conditions are likely to be similar to those in the future, suggesting that adaptations for future climates could be designed using stress patterns realised today.

Suggested Citation

  • Ke Liu & Matthew Tom Harrison & Haoliang Yan & De Li Liu & Holger Meinke & Gerrit Hoogenboom & Bin Wang & Bin Peng & Kaiyu Guan & Jonas Jaegermeyr & Enli Wang & Feng Zhang & Xiaogang Yin & Sotirios Ar, 2023. "Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36129-4
    DOI: 10.1038/s41467-023-36129-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36129-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36129-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lindsey L. Sloat & Steven J. Davis & James S. Gerber & Frances C. Moore & Deepak K. Ray & Paul C. West & Nathaniel D. Mueller, 2020. "Climate adaptation by crop migration," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Snow, Val & Rodriguez, Daniel & Dynes, Robyn & Kaye-Blake, William & Mallawaarachchi, Thilak & Zydenbos, Sue & Cong, Lei & Obadovic, Irena & Agnew, Rob & Amery, Nicole & Bell, Lindsay & Benson, Cristy, 2021. "Resilience achieved via multiple compensating subsystems: The immediate impacts of COVID-19 control measures on the agri-food systems of Australia and New Zealand," Agricultural Systems, Elsevier, vol. 187(C).
    3. Ara, Iffat & Turner, Lydia & Harrison, Matthew Tom & Monjardino, Marta & deVoil, Peter & Rodriguez, Daniel, 2021. "Application, adoption and opportunities for improving decision support systems in irrigated agriculture: A review," Agricultural Water Management, Elsevier, vol. 257(C).
    4. Esther-Mirjam Sent, 2018. "Rationality and bounded rationality: you can’t have one without the other," The European Journal of the History of Economic Thought, Taylor & Francis Journals, vol. 25(6), pages 1370-1386, November.
    5. Tomoko Hasegawa & Shinichiro Fujimori & Petr Havlík & Hugo Valin & Benjamin Leon Bodirsky & Jonathan C. Doelman & Thomas Fellmann & Page Kyle & Jason F. L. Koopman & Hermann Lotze-Campen & Daniel Maso, 2018. "Risk of increased food insecurity under stringent global climate change mitigation policy," Nature Climate Change, Nature, vol. 8(8), pages 699-703, August.
    6. Kenneth G. Cassman & Patricio Grassini, 2020. "A global perspective on sustainable intensification research," Nature Sustainability, Nature, vol. 3(4), pages 262-268, April.
    7. James R. Hunt & Julianne M. Lilley & Ben Trevaskis & Bonnie M. Flohr & Allan Peake & Andrew Fletcher & Alexander B. Zwart & David Gobbett & John A. Kirkegaard, 2019. "Early sowing systems can boost Australian wheat yields despite recent climate change," Nature Climate Change, Nature, vol. 9(3), pages 244-247, March.
    8. Banziger, Marianne & Setimela, Peter S. & Hodson, David & Vivek, Bindiganavile, 2006. "Breeding for improved abiotic stress tolerance in maize adapted to southern Africa," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 212-224, February.
    9. Maximilian Kotz & Anders Levermann & Leonie Wenz, 2022. "The effect of rainfall changes on economic production," Nature, Nature, vol. 601(7892), pages 223-227, January.
    10. S. Asseng & F. Ewert & C. Rosenzweig & J. W. Jones & J. L. Hatfield & A. C. Ruane & K. J. Boote & P. J. Thorburn & R. P. Rötter & D. Cammarano & N. Brisson & B. Basso & P. Martre & P. K. Aggarwal & C., 2013. "Uncertainty in simulating wheat yields under climate change," Nature Climate Change, Nature, vol. 3(9), pages 827-832, September.
    11. Miroslav Trnka & Reimund P. Rötter & Margarita Ruiz-Ramos & Kurt Christian Kersebaum & Jørgen E. Olesen & Zdeněk Žalud & Mikhail A. Semenov, 2014. "Adverse weather conditions for European wheat production will become more frequent with climate change," Nature Climate Change, Nature, vol. 4(7), pages 637-643, July.
    12. Phelan, David C. & Harrison, Matthew T. & Kemmerer, Ernst P. & Parsons, David, 2015. "Management opportunities for boosting productivity of cool-temperate dairy farms under climate change," Agricultural Systems, Elsevier, vol. 138(C), pages 46-54.
    13. David B. Lobell & Graeme L. Hammer & Greg McLean & Carlos Messina & Michael J. Roberts & Wolfram Schlenker, 2013. "The critical role of extreme heat for maize production in the United States," Nature Climate Change, Nature, vol. 3(5), pages 497-501, May.
    14. Harrison, Matthew T. & Jackson, Tom & Cullen, Brendan R. & Rawnsley, Richard P. & Ho, Christie & Cummins, Leo & Eckard, Richard J., 2014. "Increasing ewe genetic fecundity improves whole-farm production and reduces greenhouse gas emissions intensities," Agricultural Systems, Elsevier, vol. 131(C), pages 23-33.
    15. De Liu & Heping Zuo, 2012. "Statistical downscaling of daily climate variables for climate change impact assessment over New South Wales, Australia," Climatic Change, Springer, vol. 115(3), pages 629-666, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felix N. Fernando & Meg Maloney & Lauren Tappel, 2023. "Perceptions of Urban Community Resilience: Beyond Disaster Recovery in the Face of Climate Change," Sustainability, MDPI, vol. 15(19), pages 1-21, October.
    2. Cailin Wang & Enliang Guo & Yongfang Wang & Buren Jirigala & Yao Kang & Ye Zhang, 2023. "Spatiotemporal variations in drought and waterlogging and their effects on maize yields at different growth stages in Jilin Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 155-180, August.
    3. Rui de Sousa & Luís Bragança & Manuela V. da Silva & Rui S. Oliveira, 2024. "Challenges and Solutions for Sustainable Food Systems: The Potential of Home Hydroponics," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
    4. Zhang, Yajun & Wang, Weilu & Li, Siyu & Zhu, Kuanyu & Hua, Xia & Harrison, Matthew Tom & Liu, Ke & Yang, Jianchang & Liu, Lijun & Chen, Yun, 2023. "Integrated management approaches enabling sustainable rice production under alternate wetting and drying irrigation," Agricultural Water Management, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monjardino, Marta & Harrison, Matthew T. & DeVoil, Peter & Rodriguez, Daniel & Sadras, Victor O., 2022. "Agronomic and on-farm infrastructure adaptations to manage economic risk in Australian irrigated broadacre systems: A case study," Agricultural Water Management, Elsevier, vol. 269(C).
    2. Qiao, Shengchao & Harrison, Sandy P. & Prentice, I. Colin & Wang, Han, 2023. "Optimality-based modelling of wheat sowing dates globally," Agricultural Systems, Elsevier, vol. 206(C).
    3. Quan, Hao & Ding, Dianyuan & Wu, Lihong & Qiao, Ruonan & Dong, Qin'ge & Zhang, Tibin & Feng, Hao & Wu, Lianhai & Siddique, Kadambot H.M., 2022. "Future climate change impacts on mulched maize production in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 266(C).
    4. Shekhar, Ankit & Shapiro, Charles A., 2022. "Prospective crop yield and income return based on a retrospective analysis of a long-term rainfed agriculture experiment in Nebraska," Agricultural Systems, Elsevier, vol. 198(C).
    5. Bohan, David & Schmucki, Reto & Abay, Abrha & Termansen, Mette & Bane, Miranda & Charalabiis, Alice & Cong, Rong-Gang & Derocles, Stephane & Dorner, Zita & Forster, Matthieu & Gibert, Caroline & Harro, 2020. "Designing farmer-acceptable rotations that assure ecosystem service provision inthe face of climate change," MPRA Paper 112313, University Library of Munich, Germany.
    6. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    7. Chandio, Abbas Ali & Ozdemir, Dicle & Jiang, Yuansheng, 2023. "Modelling the impact of climate change and advanced agricultural technologies on grain output: Recent evidence from China," Ecological Modelling, Elsevier, vol. 485(C).
    8. Katharina Schulze & Žiga Malek & Dmitry Schepaschenko & Myroslava Lesiv & Steffen Fritz & Peter H. Verburg, 2023. "Pantropical distribution of short-rotation woody plantations: spatial probabilities under current and future climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(5), pages 1-22, June.
    9. Yang, Zhikai & Liu, Pan & Cheng, Lei & Liu, Deli & Ming, Bo & Li, He & Xia, Qian, 2021. "Sizing utility-scale photovoltaic power generation for integration into a hydropower plant considering the effects of climate change: A case study in the Longyangxia of China," Energy, Elsevier, vol. 236(C).
    10. Xiao, Dengpan & Liu, De Li & Wang, Bin & Feng, Puyu & Waters, Cathy, 2020. "Designing high-yielding maize ideotypes to adapt changing climate in the North China Plain," Agricultural Systems, Elsevier, vol. 181(C).
    11. Martins, Minella Alves & Tomasella, Javier & Dias, Cássia Gabriele, 2019. "Maize yield under a changing climate in the Brazilian Northeast: Impacts and adaptation," Agricultural Water Management, Elsevier, vol. 216(C), pages 339-350.
    12. Wang, Bin & Feng, Puyu & Chen, Chao & Liu, De Li & Waters, Cathy & Yu, Qiang, 2019. "Designing wheat ideotypes to cope with future changing climate in South-Eastern Australia," Agricultural Systems, Elsevier, vol. 170(C), pages 9-18.
    13. Ara, Iffat & Turner, Lydia & Harrison, Matthew Tom & Monjardino, Marta & deVoil, Peter & Rodriguez, Daniel, 2021. "Application, adoption and opportunities for improving decision support systems in irrigated agriculture: A review," Agricultural Water Management, Elsevier, vol. 257(C).
    14. Liu, Huan & Pequeno, Diego N.L. & Hernández-Ochoa, Ixchel M. & Krupnik, Timothy J. & Sonder, Kai & Xiong, Wei & Xu, Yinlong, 2020. "A consistent calibration across three wheat models to simulate wheat yield and phenology in China," Ecological Modelling, Elsevier, vol. 430(C).
    15. Dengpan Xiao & Huizi Bai & De Li Liu & Jianzhao Tang & Bin Wang & Yanjun Shen & Jiansheng Cao & Puyu Feng, 2022. "Projecting future changes in extreme climate for maize production in the North China Plain and the role of adjusting the sowing date," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(3), pages 1-21, March.
    16. Schmitt, Jonas & Offermann, Frank & Söder, Mareike & Frühauf, Cathleen & Finger, Robert, 2022. "Extreme weather events cause significant crop yield losses at the farm level in German agriculture," Food Policy, Elsevier, vol. 112(C).
    17. Harrison, Matthew T. & McSweeney, Chris & Tomkins, Nigel W. & Eckard, Richard J., 2015. "Improving greenhouse gas emissions intensities of subtropical and tropical beef farming systems using Leucaena leucocephala," Agricultural Systems, Elsevier, vol. 136(C), pages 138-146.
    18. Ayami Hayashi & Fuminori Sano & Takashi Homma & Keigo Akimoto, 2023. "Mitigating trade-offs between global food access and net-zero emissions: the potential contribution of direct air carbon capture and storage," Climatic Change, Springer, vol. 176(5), pages 1-19, May.
    19. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    20. Gatti, Nicolas & Cecil, Michael & Baylis, Kathy & Estes, Lyndon & Blekking, Jordan & Heckelei, Thomas & Vergopolan, Noemi & Evans, Tom, 2023. "Is closing the agricultural yield gap a “risky” endeavor?," Agricultural Systems, Elsevier, vol. 208(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36129-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.