IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i9p1770-d1238532.html
   My bibliography  Save this article

Spatiotemporal Variations of Production–Living–Ecological Space under Various, Changing Climate and Land Use Scenarios in the Upper Reaches of Hanjiang River Basin, China

Author

Listed:
  • Pengtao Wang

    (School of Tourism & Research Institute of Human Geography, Xi’an International Studies University, Xi’an 710128, China)

  • Xupu Li

    (School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China)

  • Liwei Zhang

    (School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China)

  • Zhuangzhuang Wang

    (State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

  • Jiangtao Bai

    (School of History and Archives, Yunnan University, Kunming 650091, China)

  • Yongyong Song

    (School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China)

  • Hongzhu Han

    (School of Tourism & Research Institute of Human Geography, Xi’an International Studies University, Xi’an 710128, China)

  • Ting Zhao

    (School of Tourism & Research Institute of Human Geography, Xi’an International Studies University, Xi’an 710128, China)

  • Guan Huang

    (School of Tourism & Research Institute of Human Geography, Xi’an International Studies University, Xi’an 710128, China)

  • Junping Yan

    (School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China)

Abstract

Land is an important resource that supports the production, life, and ecological development of human society. The current research on production–living–ecological space (PLES) is mainly focusing on the identification of single and dominant functions of land space, and the comprehensive spatial function measurement index of PLES (PLESI) is less known in the effective quantitative evaluation of multifunctionality of different land use categories. Integrating the CMIP6 (Coupled Model Intercomparison Project phase 6) scenario data and the future land use simulation model (FLUS), this research took the upper reaches of the Hanjiang River (URHR) as an example to explore the temporal and spatial variations in land use, PLES, and PLESIs during 2000–2020, and in the SSP2-4.5 and SSP5-8.5 scenarios from 2021 to 2100. The findings were as follows: (1) Forest land is the most widely distributed type of land; correspondingly, ecological space has the widest distribution area in PLES, followed by production space. (2) The area of dry land and building land increased between 2000 and 2010, accompanied by the increase in living space. From 2010 to 2020, the growth rate of building land tended to slow down while forest land increased, and the conflict of PLES eased. (3) The transfer between forest land and dry land is projected to intensify under the SSP2-4.5 scenario, while it is projected to occur between forest land and grassland under the SSP5-8.5 scenario. As for the changes in PLES, the SSP2-4.5 scenario has a greater impact than the SSP5-8.5 scenario. Spatially, several sub-basins in the northern URHR are the main areas of land use and PLES change. (4) PLESI presents a significant downward trend from 2000 to 2020 while trending upward under the SSP5-8.5 scenario and trending downward slightly under the SSP2-4.5 scenario between 2020 and 2100. Combining climate scenarios and the future land use simulation, this research would support the effective utilization of regional land resources and ecosystem management decision-making.

Suggested Citation

  • Pengtao Wang & Xupu Li & Liwei Zhang & Zhuangzhuang Wang & Jiangtao Bai & Yongyong Song & Hongzhu Han & Ting Zhao & Guan Huang & Junping Yan, 2023. "Spatiotemporal Variations of Production–Living–Ecological Space under Various, Changing Climate and Land Use Scenarios in the Upper Reaches of Hanjiang River Basin, China," Land, MDPI, vol. 12(9), pages 1-21, September.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:9:p:1770-:d:1238532
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/9/1770/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/9/1770/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bin Wang & De Li Liu & Ian Macadam & Lisa V. Alexander & Gab Abramowitz & Qiang Yu, 2016. "Multi-model ensemble projections of future extreme temperature change using a statistical downscaling method in south eastern Australia," Climatic Change, Springer, vol. 138(1), pages 85-98, September.
    2. Siabi, E. K. & Awafo, E. A. & Kabo-bah, A. T. & Derkyi, N. S. A. & Akpoti, Komlavi & Mortey, E. M. & Yazdanie, M., 2023. "Assessment of Shared Socioeconomic Pathway (SSP) climate scenarios and its impacts on the Greater Accra Region," Papers published in Journals (Open Access), International Water Management Institute, pages 1-49:101432.
    3. Xupu Li & Shuangshuang Li & Yufeng Zhang & Patrick J. O’Connor & Liwei Zhang & Junping Yan, 2021. "Landscape Ecological Risk Assessment under Multiple Indicators," Land, MDPI, vol. 10(7), pages 1-16, July.
    4. Baldini, Carolina & Marasas, Mariana Edith & Tittonell, Pablo & Drozd, Andrea Alejandra, 2022. "Urban, periurban and horticultural landscapes – Conflict and sustainable planning in La Plata district, Argentina," Land Use Policy, Elsevier, vol. 117(C).
    5. De Liu & Heping Zuo, 2012. "Statistical downscaling of daily climate variables for climate change impact assessment over New South Wales, Australia," Climatic Change, Springer, vol. 115(3), pages 629-666, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ennan Zheng & Mengting Qin & Peng Chen & Tianyu Xu & Zhongxue Zhang, 2022. "Climate Change Affects the Utilization of Light and Heat Resources in Paddy Field on the Songnen Plain, China," Agriculture, MDPI, vol. 12(10), pages 1-19, October.
    2. Bin Wang & De Li Liu & Cathy Waters & Qiang Yu, 2018. "Quantifying sources of uncertainty in projected wheat yield changes under climate change in eastern Australia," Climatic Change, Springer, vol. 151(2), pages 259-273, November.
    3. Tang, Xiaopei & Liu, Haijun & Zhang, Zhiliang & Zheng, Caixia & She, Yingjun & Lu, Wei, 2024. "Adaptation of sprinkler irrigation scheduling and winter wheat variety to cope with climate change in the North China Plain," Agricultural Water Management, Elsevier, vol. 301(C).
    4. Wang, Bin & Feng, Puyu & Chen, Chao & Liu, De Li & Waters, Cathy & Yu, Qiang, 2019. "Designing wheat ideotypes to cope with future changing climate in South-Eastern Australia," Agricultural Systems, Elsevier, vol. 170(C), pages 9-18.
    5. Dengpan Xiao & Huizi Bai & De Li Liu, 2018. "Impact of Future Climate Change on Wheat Production: A Simulated Case for China’s Wheat System," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    6. Dengpan Xiao & Huizi Bai & De Li Liu & Jianzhao Tang & Bin Wang & Yanjun Shen & Jiansheng Cao & Puyu Feng, 2022. "Projecting future changes in extreme climate for maize production in the North China Plain and the role of adjusting the sowing date," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(3), pages 1-21, March.
    7. Hengrui Zhang & Jianing Zhang & Zhuozhuo Lv & Linjie Yao & Ning Zhang & Qing Zhang, 2023. "Spatio-Temporal Assessment of Landscape Ecological Risk and Associated Drivers: A Case Study of the Yellow River Basin in Inner Mongolia," Land, MDPI, vol. 12(6), pages 1-15, May.
    8. Lin Ye & Nancy Grimm, 2013. "Modelling potential impacts of climate change on water and nitrate export from a mid-sized, semiarid watershed in the US Southwest," Climatic Change, Springer, vol. 120(1), pages 419-431, September.
    9. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    10. Li Yue & Hongbo Zhao & Xiaoman Xu & Tianshun Gu & Zeting Jia, 2022. "Quantifying the Spatial Fragmentation Pattern and Its Influencing Factors of Urban Land Use: A Case Study of Pingdingshan City, China," Land, MDPI, vol. 11(5), pages 1-15, May.
    11. Liang-Jie Wang & Shuai Ma & Yong-Peng Qiao & Jin-Chi Zhang, 2020. "Simulating the Impact of Future Climate Change and Ecological Restoration on Trade-Offs and Synergies of Ecosystem Services in Two Ecological Shelters and Three Belts in China," IJERPH, MDPI, vol. 17(21), pages 1-26, October.
    12. Dongchuan Wang & Hua Chai & Zhiheng Wang & Kangjian Wang & Hongyi Wang & Hui Long & Jianshe Gao & Aoze Wei & Sirun Wang, 2022. "Dynamic Monitoring and Ecological Risk Analysis of Lake Inundation Areas in Tibetan Plateau," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    13. Xiuping Yi & Ling Zou & Zigeng Niu & Daoyang Jiang & Qian Cao, 2022. "Multi-Model Ensemble Projections of Winter Extreme Temperature Events on the Chinese Mainland," IJERPH, MDPI, vol. 19(10), pages 1-21, May.
    14. Tan, Lili & Feng, Puyu & Li, Baoguo & Huang, Feng & Liu, De Li & Ren, Pinpin & Liu, Haipeng & Srinivasan, Raghavan & Chen, Yong, 2022. "Climate change impacts on crop water productivity and net groundwater use under a double-cropping system with intensive irrigation in the Haihe River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    15. Zhang, Xueliang & Ding, Beibei & Hou, Yonghao & Feng, Puyu & Liu, De Li & Srinivasan, Raghavan & Chen, Yong, 2024. "Assessing the feasibility of sprinkler irrigation schemes and their adaptation to future climate change in groundwater over-exploitation regions," Agricultural Water Management, Elsevier, vol. 292(C).
    16. Xiao, Dengpan & Liu, De Li & Wang, Bin & Feng, Puyu & Bai, Huizi & Tang, Jianzhao, 2020. "Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios," Agricultural Water Management, Elsevier, vol. 238(C).
    17. Li, Siyi & Wang, Bin & Feng, Puyu & Liu, De Li & Li, Linchao & Shi, Lijie & Yu, Qiang, 2022. "Assessing climate vulnerability of historical wheat yield in south-eastern Australia's wheat belt," Agricultural Systems, Elsevier, vol. 196(C).
    18. Yang, Zhikai & Liu, Pan & Cheng, Lei & Liu, Deli & Ming, Bo & Li, He & Xia, Qian, 2021. "Sizing utility-scale photovoltaic power generation for integration into a hydropower plant considering the effects of climate change: A case study in the Longyangxia of China," Energy, Elsevier, vol. 236(C).
    19. Tafadzwa Chivasa & Mlamuli Dhlamini & Auther Maviza & Wilfred Njabulo Nunu & Joyce Tsoka-Gwegweni, 2025. "Modelling an Optimal Climate-Driven Malaria Transmission Control Strategy to Optimise the Management of Malaria in Mberengwa District, Zimbabwe: A Multi-Method Study Protocol," IJERPH, MDPI, vol. 22(4), pages 1-19, April.
    20. Hongnan Yang & Zhijun Li, 2025. "Prediction and Influencing Factors of Precipitation in the Songliao River Basin, China: Insights from CMIP6," Sustainability, MDPI, vol. 17(5), pages 1-29, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:9:p:1770-:d:1238532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.