IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v103y2010i9p683-694.html
   My bibliography  Save this article

Recent changes in the climatic yield potential of various crops in Europe

Author

Listed:
  • Supit, I.
  • van Diepen, C.A.
  • de Wit, A.J.W.
  • Kabat, P.
  • Baruth, B.
  • Ludwig, F.

Abstract

Recent changes in the simulated potential crop yield and biomass production caused by changes in the temperature and global radiation patterns are examined, using the Crop Growth Monitoring System. The investigated crops are winter wheat, spring barley, maize, winter rapeseed, potato, sugar beet, pulses and sunflower. The period considered is 1976-2005. The research was executed at NUTS2 level. Maize and sugar beet were the crops least affected by changing temperature and global radiation patterns. For the other crops the simulated potential yield remained stable in the majority of regions, while decreasing trends in simulated potential yields prevailed in the remaining regions. The changes appear in a geographical pattern. In Italy and southern central Europe, temperature and radiation change effects are more severe than elsewhere, in these areas potential crop yields of more than three crops significantly decreased. In the UK and some regions in northern Europe the yield potential of various crops increased. In a next step the national yield statistics were analyzed. For a large majority of the countries the yield increases of wheat, barley and to a lesser extent rapeseed are leveling off. Several explanations could be given, however, as the simulated yield potential for these crops decreased in various regions, the changing temperature and radiation patterns may also contribute to the diminishing yield increases or to the stagnation. In more than 50% of the investigated countries the maize, potato and sugar beet yields continue to increase. This can be attributed to improving production techniques, new crop varieties, sometimes in combination with an improving climatic potential. In some regions in northern Europe, yields continue to increase.

Suggested Citation

  • Supit, I. & van Diepen, C.A. & de Wit, A.J.W. & Kabat, P. & Baruth, B. & Ludwig, F., 2010. "Recent changes in the climatic yield potential of various crops in Europe," Agricultural Systems, Elsevier, vol. 103(9), pages 683-694, November.
  • Handle: RePEc:eee:agisys:v:103:y:2010:i:9:p:683-694
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(10)00116-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fulco Ludwig & Stephen Milroy & Senthold Asseng, 2009. "Impacts of recent climate change on wheat production systems in Western Australia," Climatic Change, Springer, vol. 92(3), pages 495-517, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Palazzoli, I. & Maskey, S. & Uhlenbrook, S. & Nana, E. & Bocchiola, D., 2015. "Impact of prospective climate change on water resources and crop yields in the Indrawati basin, Nepal," Agricultural Systems, Elsevier, vol. 133(C), pages 143-157.
    2. Yang, Chenyao & Fraga, Helder & Ieperen, Wim Van & Santos, João Andrade, 2017. "Assessment of irrigated maize yield response to climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 184(C), pages 178-190.
    3. Kadaja, Jüri & Saue, Triin, 2016. "Potential effects of different irrigation and drainage regimes on yield and water productivity of two potato varieties under Estonian temperate climate," Agricultural Water Management, Elsevier, vol. 165(C), pages 61-71.
    4. Bocchiola, D. & Nana, E. & Soncini, A., 2013. "Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy," Agricultural Water Management, Elsevier, vol. 116(C), pages 50-61.
    5. Bocchiola, D., 2015. "Impact of potential climate change on crop yield and water footprint of rice in the Po valley of Italy," Agricultural Systems, Elsevier, vol. 139(C), pages 223-237.
    6. Nana, E. & Corbari, C. & Bocchiola, D., 2014. "A model for crop yield and water footprint assessment: Study of maize in the Po valley," Agricultural Systems, Elsevier, vol. 127(C), pages 139-149.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:103:y:2010:i:9:p:683-694. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/agsy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.