IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14607-d1255868.html
   My bibliography  Save this article

Vulnerability Assessment of Potato Growth to Climate Change Based on GIS in Inner Mongolia, China

Author

Listed:
  • Li-Tao Yang

    (Climate Center of Inner Mongolia Autonomous Region, Hohhot 010051, China)

  • Yong-Gang Sun

    (Climate Center of Inner Mongolia Autonomous Region, Hohhot 010051, China)

  • Chuan Jiang

    (School of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Jun-Fang Zhao

    (State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China)

  • Jin-Xia Qian

    (Decision and Service Department, Shanxi Meteorological Observatory, Taiyuan 030006, China)

Abstract

Since 2016, the potato has gradually become the fourth major staple food in China, and the potato planting area and total output in Inner Mongolia rank among the top in the country. Potato is a climate dominant crop in Inner Mongolia, and it is an urgent requirement to study the impact of the potato’s climate vulnerability and effectively avoid climate risks to ensure national food security. An index system for a vulnerability assessment of potato production in Inner Mongolia was established based on GIS and AHP. Based on the definition of vulnerability and the theory of disaster risk, a comprehensive evaluation model of potato growth vulnerability was established. The results showed that the potato production in central Inner Mongolia was highly vulnerable, while the potato production in eastern and western Inner Mongolia was relatively vulnerable. Central Ulanqab, southern Hohhot, southern Baotou and southwestern Xilin Gol League were most vulnerable. The eastern part of Hulunbuir, Xingan League, Tongliao City and the southern part of Ordos City are the least vulnerable areas, while Chifeng, Bayannur and most other parts of northern Ordos City are moderately vulnerable areas. According to the different influencing factors of climate change vulnerability in major potato producing areas, different countermeasures should be taken respectively. The results can provide a scientific basis for the sustainable development of potato production in autonomous regions. The research results were approved by the national Potato Meteorological Service Center.

Suggested Citation

  • Li-Tao Yang & Yong-Gang Sun & Chuan Jiang & Jun-Fang Zhao & Jin-Xia Qian, 2023. "Vulnerability Assessment of Potato Growth to Climate Change Based on GIS in Inner Mongolia, China," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14607-:d:1255868
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14607/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gurdeep Singh Malhi & Manpreet Kaur & Prashant Kaushik, 2021. "Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    2. Supit, I. & van Diepen, C.A. & de Wit, A.J.W. & Kabat, P. & Baruth, B. & Ludwig, F., 2010. "Recent changes in the climatic yield potential of various crops in Europe," Agricultural Systems, Elsevier, vol. 103(9), pages 683-694, November.
    3. Li-Tao Yang & Jun-Fang Zhao & Xiang-Ping Jiang & Sheng Wang & Lin-Hui Li & Hong-Fei Xie, 2022. "Effects of Climate Change on the Climatic Production Potential of Potatoes in Inner Mongolia, China," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahboobe Ghobadi & Mahdi Gheysari & Mohammad Shayannejad & Hamze Dokoohaki, 2023. "Analyzing the Effects of Planting Date on the Uncertainty of CERES-Maize and Its Potential to Reduce Yield Gap in Arid and Mediterranean Climates," Agriculture, MDPI, vol. 13(8), pages 1-17, July.
    2. Singh, Ajay Kumar & Ashraf, Shah Nawaz & Sharma, Sandeep Kumar, 2023. "Farmer’s Perception on Climatic Factors and Social-economic Characteristics in the Agricultural Sector of Gujarat," Research on World Agricultural Economy, Nan Yang Academy of Sciences Pte Ltd (NASS), vol. 4(01), March.
    3. Md. Shakhawat Hossain, 2025. "Assessing smallholder farmers’ flood risk behavior and their willingness to pay for crop insurance as a risk coping strategy in northern Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(4), pages 4191-4217, March.
    4. Lea Primožič & Andreja Kutnar, 2022. "Sustainability Communication in Global Consumer Brands," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    5. Shrestha, Sujata & Shrestha, Uttam Babu & Shrestha, Bibek Raj & Maharjan, Shirish & Udas, Erica & Aryal, Kamal, 2024. "Determinants of adoption of climate resilient agricultural solutions," Agricultural Systems, Elsevier, vol. 221(C).
    6. Sanjeev Kumar & Ajay K. Singh, 2023. "Modeling the effects of climate change on agricultural productivity: evidence from Himachal Pradesh, India," Asia-Pacific Journal of Regional Science, Springer, vol. 7(2), pages 521-548, June.
    7. Shobande, Olatunji A. & Asongu, Simplice A., 2022. "The Critical Role of Education and ICT in Promoting Environmental Sustainability in Eastern and Southern Africa: A Panel VAR Approach," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    8. repec:ers:journl:v:xxiv:y:2021:i:4:p:517-533 is not listed on IDEAS
    9. Mohamed A. Rashwan & Ibrahim M. Al-Helal & Saad M. Al-Kahtani & Fahad N. Alkoaik & Adil A. Fickak & Waleed A. Almasoud & Faisal A. Alshamiry & Mansour N. Ibrahim & Ronnel B. Fulleros & Mohamed R. Shad, 2025. "Performance Evaluation of Volcanic Stone Pad Used in Evaporative Cooling System," Energies, MDPI, vol. 18(8), pages 1-16, April.
    10. Summer Mabula & Keoikantse Sianga & Ayana Angassa, 2024. "Indigenous Ecological Knowledge and Perceptions of Climate Change on the Environment and Livelihood of Local Communities in Kgalagadi District of Botswana," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 17(4), pages 1-15, July.
    11. Sayamol Charoenratana & Cholnapa Anukul & Peter M. Rosset, 2021. "Food Sovereignty and Food Security: Livelihood Strategies Pursued by Farmers during the Maize Monoculture Boom in Northern Thailand," Sustainability, MDPI, vol. 13(17), pages 1-20, September.
    12. Mastawesha Misganaw Engdaw & Brian Mayanja & Sabrina Rose & Ana Maria Loboguerrero & Aniruddha Ghosh, 2024. "Bridging evidence gaps in attributing loss and damage, and measures to minimize impacts," PLOS Climate, Public Library of Science, vol. 3(8), pages 1-11, August.
    13. Antonio Valente & Carlos Costa & Leonor Pereira & Bruno Soares & José Lima & Salviano Soares, 2022. "A LoRaWAN IoT System for Smart Agriculture for Vine Water Status Determination," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
    14. Dae-Ho Jung & Jung-Eek Son, 2021. "CO 2 Utilization Strategy for Sustainable Cultivation of Mushrooms and Lettuces," Sustainability, MDPI, vol. 13(10), pages 1-11, May.
    15. Qiong Jia & Mengfei Li & Xuecheng Dou, 2022. "Climate Change Affects Crop Production Potential in Semi-Arid Regions: A Case Study in Dingxi, Northwest China, in Recent 30 Years," Sustainability, MDPI, vol. 14(6), pages 1-12, March.
    16. Marc Audi & Amjad Ali & Mohamad Kassem, 2020. "Greenhouse Gases: A Review of Losses and Benefits," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 403-418.
    17. Nana, E. & Corbari, C. & Bocchiola, D., 2014. "A model for crop yield and water footprint assessment: Study of maize in the Po valley," Agricultural Systems, Elsevier, vol. 127(C), pages 139-149.
    18. Peres Ofori, 2021. "Mortgage market and climate variability adaptation: evidence from the mortgage market in emerging cities," SN Business & Economics, Springer, vol. 1(12), pages 1-22, December.
    19. Denghao Pang & Hong Wang & Peng Chen & Dong Liang, 2022. "Spider Mites Detection in Wheat Field Based on an Improved RetinaNet," Agriculture, MDPI, vol. 12(12), pages 1-14, December.
    20. Saxena, Raka & Pant, Devesh Kumar & Pant, Satish Chandra & Singh, Reeta, 2023. "Mapping the Global Research Landscape: Bibliometric Analysis of Agri-food Systems and Nutritional Security," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 0(Number 3), September.
    21. Bocchiola, D. & Brunetti, L. & Soncini, A. & Polinelli, F. & Gianinetto, M., 2019. "Impact of climate change on agricultural productivity and food security in the Himalayas: A case study in Nepal," Agricultural Systems, Elsevier, vol. 171(C), pages 113-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14607-:d:1255868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.