IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v102y2009i1-3p67-76.html
   My bibliography  Save this article

Tractive power in organic farming based on fuel cell technology - Energy balance and environmental load

Author

Listed:
  • Ahlgren, S.
  • Baky, A.
  • Bernesson, S.
  • Nordberg, Å.
  • Norén, O.
  • Hansson, P.-A.

Abstract

This study analysed a future hypothetical organic farm self-sufficient in renewable tractor fuel. Biomass from the farm was assumed to be transported to a central fuel production plant and the fuel returned to the farm, where it was utilised in fuel cell powered tractors. The land use, energy balance and environmental impact of five different scenarios were studied. In the first two scenarios, straw was used as raw material for production of hydrogen or methanol via thermochemical gasification. In the third and fourth scenarios, short rotation forest (Salix) was used as raw material for the same fuels. In the fifth scenario, ley was used as raw material for hydrogen fuel via biogas production. The straw scenarios had the lowest impact in all studied environmental impact categories since the Salix scenarios had higher soil emissions and the ley scenario had comparatively large emissions from the fuel production. The energy balance was also favourable for straw, 16.3 and 19.5 for hydrogen and methanol respectively, compared to Salix 14.2 and 15.6. For ley to hydrogen the energy balance was only 6.1 due to low efficiency in the fuel production. In the Salix scenarios, 1.6% and 2.0% of the land was set aside for raw material production in the hydrogen and methanol scenarios respectively. In the straw scenarios no land needed to be reserved, but straw was collected on 4.3% and 5.3% of the area for hydrogen and methanol respectively. To produce hydrogen from ley, 4% of the land was harvested. The study showed that the difference in environmental performance lay in choice of raw material rather than choice of fuel. Hydrogen is a gas with low volumetric energy density, which requires an adapted infrastructure and tractors equipped with gas tanks. This leads to the conclusion that methanol probably will be the preferred choice if a fuel cell powered farm would be put into practice in the future.

Suggested Citation

  • Ahlgren, S. & Baky, A. & Bernesson, S. & Nordberg, Å. & Norén, O. & Hansson, P.-A., 2009. "Tractive power in organic farming based on fuel cell technology - Energy balance and environmental load," Agricultural Systems, Elsevier, vol. 102(1-3), pages 67-76, October.
  • Handle: RePEc:eee:agisys:v:102:y:2009:i:1-3:p:67-76
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(09)00076-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansson, P.-A. & Baky, A. & Ahlgren, S. & Bernesson, S. & Nordberg, A. & Noren, O. & Pettersson, O., 2007. "Self-sufficiency of motor fuels on organic farms - Evaluation of systems based on fuels produced in industrial-scale plants," Agricultural Systems, Elsevier, vol. 94(3), pages 704-714, June.
    2. Solomon, Barry D. & Banerjee, Abhijit, 2006. "A global survey of hydrogen energy research, development and policy," Energy Policy, Elsevier, vol. 34(7), pages 781-792, May.
    3. Solomon, Barry D. & Banerjee, Abhijit, 2006. "Erratum to "A global survey of hydrogen energy research, development and policy": [Energy Policy 34 (2006) 781-792]," Energy Policy, Elsevier, vol. 34(11), pages 1318-1208, July.
    4. Rowe, Rebecca L. & Street, Nathaniel R. & Taylor, Gail, 2009. "Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 271-290, January.
    5. Fredriksson, H. & Baky, A. & Bernesson, S. & Nordberg, A. & Noren, O. & Hansson, P.-A., 2006. "Use of on-farm produced biofuels on organic farms - Evaluation of energy balances and environmental loads for three possible fuels," Agricultural Systems, Elsevier, vol. 89(1), pages 184-203, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tavella, Elena, 2016. "How to make Participatory Technology Assessment in agriculture more “participatory”: The case of genetically modified plants," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 119-126.
    2. Siegmeier, Torsten & Blumenstein, Benjamin & Möller, Detlev, 2015. "Farm biogas production in organic agriculture: System implications," Agricultural Systems, Elsevier, vol. 139(C), pages 196-209.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    2. Arho Suominen, 2014. "Phases of growth in a green tech research network: a bibliometric evaluation of fuel cell technology from 1991 to 2010," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 51-72, July.
    3. Dougherty, William & Kartha, Sivan & Rajan, Chella & Lazarus, Michael & Bailie, Alison & Runkle, Benjamin & Fencl, Amanda, 2009. "Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA," Energy Policy, Elsevier, vol. 37(1), pages 56-67, January.
    4. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations," Energy Policy, Elsevier, vol. 38(1), pages 406-418, January.
    5. Shashi Sharma & Shivani Agarwal & Ankur Jain, 2021. "Significance of Hydrogen as Economic and Environmentally Friendly Fuel," Energies, MDPI, vol. 14(21), pages 1-28, November.
    6. Malça, João & Freire, Fausto, 2011. "Life-cycle studies of biodiesel in Europe: A review addressing the variability of results and modeling issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 338-351, January.
    7. Chun, Dongphil & Hong, Sungjun & Chung, Yanghon & Woo, Chungwon & Seo, Hangyeol, 2016. "Influencing factors on hydrogen energy R&D projects: An ex-post performance evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1252-1258.
    8. Xenias, Dimitrios & Whitmarsh, Lorraine, 2013. "Dimensions and determinants of expert and public attitudes to sustainable transport policies and technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 75-85.
    9. Hwang, Jenn Jiang, 2012. "Review on development and demonstration of hydrogen fuel cell scooters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3803-3815.
    10. Li, Jun, 2011. "Decoupling urban transport from GHG emissions in Indian cities--A critical review and perspectives," Energy Policy, Elsevier, vol. 39(6), pages 3503-3514, June.
    11. van Ruijven, Bas & Hari, Lakshmikanth & van Vuuren, Detlef P. & de Vries, Bert, 2008. "The potential role of hydrogen energy in India and Western Europe," Energy Policy, Elsevier, vol. 36(5), pages 1649-1665, May.
    12. Milazzo, M.F. & Spina, F. & Cavallaro, S. & Bart, J.C.J., 2013. "Sustainable soy biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 806-852.
    13. P. Balachandra & B. Sudhakara Reddy, 2007. "Hydrogen Energy For Indian Transport Sector - A Well-To-Wheel Techno-Economic and Environmental Feasibility Analysis," Energy Working Papers 22323, East Asian Bureau of Economic Research.
    14. Ainhoa Serna & Aitor Soroa & Rodrigo Agerri, 2021. "Applying Deep Learning Techniques for Sentiment Analysis to Assess Sustainable Transport," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    15. Gilbert, Brett Anitra, 2012. "Creative destruction: Identifying its geographic origins," Research Policy, Elsevier, vol. 41(4), pages 734-742.
    16. Contreras, Alfonso & Posso, Fausto & Guervos, Esther, 2010. "Modelling and simulation of the utilization of a PEM fuel cell in the rural sector of Venezuela," Applied Energy, Elsevier, vol. 87(4), pages 1376-1385, April.
    17. Zhou, Ying & Wang, Lizhi & McCalley, James D., 2011. "Designing effective and efficient incentive policies for renewable energy in generation expansion planning," Applied Energy, Elsevier, vol. 88(6), pages 2201-2209, June.
    18. Kilinc, Dilek & Sahin, Omer, 2020. "High volume hydrogen evolution from KBH4 hydrolysis with palladium complex catalyst," Renewable Energy, Elsevier, vol. 161(C), pages 257-264.
    19. Roberto Fazioli & Francesca Pantaleone, 2021. "Macroeconomic Factors Influencing Public Policy Strategies for Blue and Green Hydrogen," Energies, MDPI, vol. 14(23), pages 1-18, November.
    20. Contreras, A. & Posso, F., 2011. "Technical and financial study of the development in Venezuela of the hydrogen energy system," Renewable Energy, Elsevier, vol. 36(11), pages 3114-3123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:102:y:2009:i:1-3:p:67-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.