IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2023-04-6.html
   My bibliography  Save this article

Public Funding for Energy Innovation and Decarbonization Goals: A Coherence Challenge

Author

Listed:
  • Svetlana Ratner

    (Department of Economic and Mathematical Modelling, Peoples Friendship University of Russia (RUDN University), 6 Miklukho- Maklaya Street, Moscow, 117198, Russian Federation; & Economic Dynamics and Innovation Management Laboratory, V. A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 65 Profsoyuznaya Street, Moscow, 117997, Russian Federation)

  • Konstantin Gomonov

    (Department of Economic and Mathematical Modelling, Peoples Friendship University of Russia (RUDN University), 6 Miklukho- Maklaya Street, Moscow, 117198, Russian Federation,)

  • Svetlana Revinova

    (Department of Economic and Mathematical Modelling, Peoples Friendship University of Russia (RUDN University), 6 Miklukho- Maklaya Street, Moscow, 117198, Russian Federation,)

Abstract

This study is devoted to assessing the impact of public spending on research and development in the field of energy efficient technologies on achieving the goals of decarbonization and improving the energy efficiency of the economy. Using the two-stage Data Envelopment model, the study identifies countries with the highest and lowest efficiency of the national energy efficiency innovation support system. It was revealed that the most noticeable reduction in the carbon intensity and energy intensity of the economy in the medium term is demonstrated by countries that pay more attention to the introduction of organizational and social innovations related to changing consumer behavior (Brazil, Spain). Countries that are accumulating knowledge in radically new technological areas demonstrate the low efficiency of the innovation system at the implementation stage in the medium term (Japan, South Korea, US).

Suggested Citation

  • Svetlana Ratner & Konstantin Gomonov & Svetlana Revinova, 2023. "Public Funding for Energy Innovation and Decarbonization Goals: A Coherence Challenge," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 40-45, July.
  • Handle: RePEc:eco:journ2:2023-04-6
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/14329/7373
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/14329
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Svetlana Ratner & Andrey Lychev & Aleksei Rozhnov & Igor Lobanov, 2021. "Efficiency Evaluation of Regional Environmental Management Systems in Russia Using Data Envelopment Analysis," Mathematics, MDPI, vol. 9(18), pages 1-21, September.
    2. Emrouznejad, Ali & Yang, Guo-liang, 2018. "A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 4-8.
    3. Małgorzata K. Guzowska & Barbara Kryk & Dorota Michalak & Paulina Szyja, 2021. "R&D Spending in the Energy Sector and Achieving the Goal of Climate Neutrality," Energies, MDPI, vol. 14(23), pages 1-25, November.
    4. Galarraga, Ibon & Ramos, Ana & Lucas, Josu & Labandeira, Xavier, 2014. "The price of energy efficiency in the Spanish car market," Transport Policy, Elsevier, vol. 36(C), pages 272-282.
    5. Chiang Kao, 2014. "Efficiency Decomposition in Network Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 55-77, Springer.
    6. Jonas Meckling & Clara Galeazzi & Esther Shears & Tong Xu & Laura Diaz Anadon, 2022. "Energy innovation funding and institutions in major economies," Nature Energy, Nature, vol. 7(9), pages 876-885, September.
    7. Ebrahimigharehbaghi, Shima & Qian, Queena K. & Meijer, Frits M. & Visscher, Henk J., 2019. "Unravelling Dutch homeowners' behaviour towards energy efficiency renovations: What drives and hinders their decision-making?," Energy Policy, Elsevier, vol. 129(C), pages 546-561.
    8. Soonwoo Kwon & Jihong Lee & Sokbae Lee, 2017. "International Trends in Technological Progress: Evidence from Patent Citations, 1980–2011," Economic Journal, Royal Economic Society, vol. 127(605), pages 50-70, October.
    9. Yuan, Yuxin & Yuan, Xiaodong, 2023. "Does the development of fuel cell electric vehicles be reviving or recessional? Based on the patent analysis," Energy, Elsevier, vol. 272(C).
    10. Santos Arteaga, Francisco J. & Tavana, Madjid & Di Caprio, Debora & Toloo, Mehdi, 2019. "A dynamic multi-stage slacks-based measure data envelopment analysis model with knowledge accumulation and technological evolution," European Journal of Operational Research, Elsevier, vol. 278(2), pages 448-462.
    11. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    12. Svetlana V. Ratner & Svetlana A. Balashova & Andrey V. Lychev, 2022. "The Efficiency of National Innovation Systems in Post-Soviet Countries: DEA-Based Approach," Mathematics, MDPI, vol. 10(19), pages 1-23, October.
    13. López-Bernabé, Elena & Linares, Pedro & Galarraga, Ibon, 2022. "Energy-efficiency policies for decarbonising residential heating in Spain: A fuzzy cognitive mapping approach," Energy Policy, Elsevier, vol. 171(C).
    14. Koopmans, Carl C. & te Velde, Dirk Willem, 2001. "Bridging the energy efficiency gap: using bottom-up information in a top-down energy demand model," Energy Economics, Elsevier, vol. 23(1), pages 57-75, January.
    15. Bian, Xueying & Fabra, Natalia, 2020. "Incentives for information provision: Energy efficiency in the Spanish rental market," Energy Economics, Elsevier, vol. 90(C).
    16. Yamashita, Nobuaki, 2021. "Economic crisis and innovation capacity of Japan: Evidence from cross-country patent citations," Technovation, Elsevier, vol. 101(C).
    17. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    18. Soonwoo Kwon & Jihong Lee & Sokbae Lee, 2017. "International Trends in Technological Progress: Evidence from Patent Citations, 1980–2011," Economic Journal, Royal Economic Society, vol. 127(605), pages 50-70, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrey V. Lychev & Svetlana V. Ratner & Vladimir E. Krivonozhko, 2023. "Two-Stage Data Envelopment Analysis Models with Negative System Outputs for the Efficiency Evaluation of Government Financial Policies," Mathematics, MDPI, vol. 11(24), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khezrimotlagh, Dariush & Kaffash, Sepideh & Zhu, Joe, 2022. "U.S. airline mergers’ performance and productivity change," Journal of Air Transport Management, Elsevier, vol. 102(C).
    2. Naudé, Wim & Nagler, Paula, 2022. "The Ossified Economy: The Case of Germany, 1870-2020," IZA Discussion Papers 15607, Institute of Labor Economics (IZA).
    3. Kremantzis, Marios Dominikos & Beullens, Patrick & Kyrgiakos, Leonidas Sotirios & Klein, Jonathan, 2022. "Measurement and evaluation of multi-function parallel network hierarchical DEA systems," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    4. Koronakos, Gregory & Sotiros, Dimitris & Despotis, Dimitris K. & Kritikos, Manolis N., 2022. "Fair efficiency decomposition in network DEA: A compromise programming approach," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    5. Ibrahim Alnafrah, 2021. "Efficiency evaluation of BRICS’s national innovation systems based on bias-corrected network data envelopment analysis," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-28, December.
    6. Svetlana V. Ratner & Artem M. Shaposhnikov & Andrey V. Lychev, 2023. "Network DEA and Its Applications (2017–2022): A Systematic Literature Review," Mathematics, MDPI, vol. 11(9), pages 1-24, May.
    7. Georgiou, Andreas C. & Thanassoulis, Emmanuel & Papadopoulou, Alexandra, 2022. "Using data envelopment analysis in markovian decision making," European Journal of Operational Research, Elsevier, vol. 298(1), pages 276-292.
    8. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    9. Sinuany-Stern, Zilla, 2023. "Foundations of operations research: From linear programming to data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1069-1080.
    10. Hyuk-Soo Kwon & Jihong Lee & Sokbae Lee & Ryungha Oh, 2022. "Knowledge spillovers and patent citations: trends in geographic localization, 1976–2015," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 31(3), pages 123-147, April.
    11. Qingyou Yan & Fei Zhao & Xu Wang & Tomas Balezentis, 2021. "The Environmental Efficiency Analysis Based on the Three-Step Method for Two-Stage Data Envelopment Analysis," Energies, MDPI, vol. 14(21), pages 1-14, October.
    12. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    13. Meng, Fanyong & Xiong, Beibei, 2021. "Logical efficiency decomposition for general two-stage systems in view of cross efficiency," European Journal of Operational Research, Elsevier, vol. 294(2), pages 622-632.
    14. Francisco Javier Santos Arteaga & Debora Di Caprio & David Cucchiari & Josep M Campistol & Federico Oppenheimer & Fritz Diekmann & Ignacio Revuelta, 2021. "Modeling patients as decision making units: evaluating the efficiency of kidney transplantation through data envelopment analysis," Health Care Management Science, Springer, vol. 24(1), pages 55-71, March.
    15. Wan, Qunchao & Chen, Jin & Yao, Zhu & Yuan, Ling, 2022. "Preferential tax policy and R&D personnel flow for technological innovation efficiency of China's high-tech industry in an emerging economy," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    16. Ming-Fu Hsu & Ying-Shao Hsin & Fu-Jiing Shiue, 2022. "Business analytics for corporate risk management and performance improvement," Annals of Operations Research, Springer, vol. 315(2), pages 629-669, August.
    17. Madjid Tavana & Kaveh Khalili-Damghani & Francisco J. Santos Arteaga & Arousha Hashemi, 2020. "A Malmquist productivity index for network production systems in the energy sector," Annals of Operations Research, Springer, vol. 284(1), pages 415-445, January.
    18. Moraes, Ricardo Kalil & Wanke, Peter Fernandes & Faria, João Ricardo, 2021. "Unveiling the endogeneity between social-welfare and labor efficiency: Two-stage NDEA neural network approach," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    19. Horne, Matt & Jaccard, Mark & Tiedemann, Ken, 2005. "Improving behavioral realism in hybrid energy-economy models using discrete choice studies of personal transportation decisions," Energy Economics, Elsevier, vol. 27(1), pages 59-77, January.
    20. Kao, Chiang, 2018. "Multiplicative aggregation of division efficiencies in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 270(1), pages 328-336.

    More about this item

    Keywords

    energy innovations; decardonization; energy efficiency; Data Envelopment Analysis; public funding;
    All these keywords.

    JEL classification:

    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2023-04-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.