IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2020-02-6.html
   My bibliography  Save this article

Decision Support System for Hydro Power Plants in Amazon Considering the Cost of Externalities

Author

Listed:
  • Evelyn Gabbay Alves Carvalho

    (PhD Student of Graduate Program in Engineering of Natural Resources of the Amazon, Federal University of Par , PRODERNA/ITEC/UFPA, Brazil,)

  • Claudio Jos Cavalcante Blanco

    (School of Environmental and Sanitary Engineering, Federal University of Par , FAESA/ITEC/UFPA, Brazil,)

  • Andr A. A. Montenegro Duarte

    (School of Environmental and Sanitary Engineering, Federal University of Par , FAESA/ITEC/UFPA, Brazil,)

  • Luiz Maur cio Furtado Mau s

    (School of Civil Engineering, Federal University of Par , FEC/ITEC/UFPA, Brazil.)

Abstract

Feasibility studies on Hydro Power Plants (HPPs) should adequately measure the values of the social, economic and environmental impacts (i.e., its externalities) of HPPs. In this case, the final cost of an energy generation project is lower than the actual value because the impacts are not appropriately assessed. Thus, the objective of this paper is to estimate the total cost of generated energy using a methodology capable of accounting for the cost of the externalities of hydroelectric plants. This study assesses the externality resulting from loss of fishing activity, an economic activity practised by a large part of a population affected by hydroelectric dam construction. To assess this externality, the opportunity cost method and a time series analysis are used to forecast future values. It is demonstrated that when considering only the externality resulting from the loss of fishing activity, the expected cost of energy production could increase significantly. This result indicates the need to calculate all the externalities caused by the implementation of a hydroelectric power plant (HPP) and to incorporate these actual values into the energy production cost, so the enterprise is sustainable and feasible. Our results also facilitate a realistic comparison with other sources of energy generation.

Suggested Citation

  • Evelyn Gabbay Alves Carvalho & Claudio Jos Cavalcante Blanco & Andr A. A. Montenegro Duarte & Luiz Maur cio Furtado Mau s, 2020. "Decision Support System for Hydro Power Plants in Amazon Considering the Cost of Externalities," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 40-47.
  • Handle: RePEc:eco:journ2:2020-02-6
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/8746/4863
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/8746/4863
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Almeida Prado, Fernando & Athayde, Simone & Mossa, Joann & Bohlman, Stephanie & Leite, Flavia & Oliver-Smith, Anthony, 2016. "How much is enough? An integrated examination of energy security, economic growth and climate change related to hydropower expansion in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1132-1136.
    2. Gunawardena, U.A.D. Prasanthi, 2010. "Inequalities and externalities of power sector: A case of Broadlands hydropower project in Sri Lanka," Energy Policy, Elsevier, vol. 38(2), pages 726-734, February.
    3. Alves, Laura Araujo & Uturbey, Wadaed, 2010. "Environmental degradation costs in electricity generation: The case of the Brazilian electrical matrix," Energy Policy, Elsevier, vol. 38(10), pages 6204-6214, October.
    4. Tolmasquim, Mauricio Tiomno & Seroa da Motta, Ronaldo & La Rovere, Emilio Lebre & Barata, Martha Macedo de Lima & Monteiro, Aline Guimaraes, 2001. "Environmental valuation for long-term strategic planning -- the case of the Brazilian power sector," Ecological Economics, Elsevier, vol. 37(1), pages 39-51, April.
    5. Issa Ibrahim Berchin & Jéssica Garcia & Mauri Luiz Heerdt & Angélica de Quevedo Moreira & Ana Clara Medeiros Silveira & José Baltazar Salgueirinho Osório de Andrade Guerra, 2015. "Energy production and sustainability: A study of Belo Monte hydroelectric power plant," Natural Resources Forum, Blackwell Publishing, vol. 0(3-4), pages 224-237, August.
    6. Sundqvist, Thomas, 2004. "What causes the disparity of electricity externality estimates?," Energy Policy, Elsevier, vol. 32(15), pages 1753-1766, October.
    7. Roberto Ponce & Felipe Vásquez & Alejandra Stehr & Patrick Debels & Carlos Orihuela, 2011. "Estimating the Economic Value of Landscape Losses Due to Flooding by Hydropower Plants in the Chilean Patagonia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2449-2466, August.
    8. Morimoto, Risako, 2013. "Incorporating socio-environmental considerations into project assessment models using multi-criteria analysis: A case study of Sri Lankan hydropower projects," Energy Policy, Elsevier, vol. 59(C), pages 643-653.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    2. Năstase, Gabriel & Şerban, Alexandru & Năstase, Alina Florentina & Dragomir, George & Brezeanu, Alin Ionuţ & Iordan, Nicolae Fani, 2017. "Hydropower development in Romania. A review from its beginnings to the present," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 297-312.
    3. Alves, Laura Araujo & Uturbey, Wadaed, 2010. "Environmental degradation costs in electricity generation: The case of the Brazilian electrical matrix," Energy Policy, Elsevier, vol. 38(10), pages 6204-6214, October.
    4. Sara Sousa & Anabela Botelho & Lígia M. Costa Pinto & Marieta Valente, 2019. "How Relevant Are Non-Use Values and Perceptions in Economic Valuations? The Case of Hydropower Plants," Energies, MDPI, vol. 12(15), pages 1-18, August.
    5. Lorafe Lozano & Evelyn B. Taboada, 2021. "The Power of Electricity: How Effective Is It in Promoting Sustainable Development in Rural Off-Grid Islands in the Philippines?," Energies, MDPI, vol. 14(9), pages 1-17, May.
    6. Anabela Botelho & Lina Lourenço-Gomes & Lígia M. Costa Pinto & Sara Sousa & Marieta Valente, 2018. "Discrete-choice experiments valuing local environmental impacts of renewables: two approaches to a case study in Portugal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 145-162, December.
    7. Botelho, Anabela & Ferreira, Paula & Lima, Fátima & Pinto, Lígia M. Costa & Sousa, Sara, 2017. "Assessment of the environmental impacts associated with hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 896-904.
    8. Sgarbi, Felipe de Albuquerque & Uhlig, Alexandre & Simões, André Felipe & Goldemberg, José, 2019. "An assessment of the socioeconomic externalities of hydropower plants in Brazil," Energy Policy, Elsevier, vol. 129(C), pages 868-879.
    9. Paes, Carlos Eduardo & Gandelman, Dan Abensur & Firmo, Heloisa Teixeira & Bahiense, Laura, 2022. "The power generation expansion planning in Brazil: Considering the impact of greenhouse gas emissions in an Investment Decision Model," Renewable Energy, Elsevier, vol. 184(C), pages 225-238.
    10. Rayamajhee, Veeshan & Joshi, Aakrit, 2018. "Economic trade-offs between hydroelectricity production and environmental externalities: A case for local externality mitigation fund," Renewable Energy, Elsevier, vol. 129(PA), pages 237-244.
    11. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Integrating power systems for remote island energy supply: Lessons from Mykines, Faroe Islands," Renewable Energy, Elsevier, vol. 85(C), pages 642-648.
    12. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    13. Kumar, Deepak & Katoch, S.S., 2015. "Sustainability suspense of small hydropower projects: A study from western Himalayan region of India," Renewable Energy, Elsevier, vol. 76(C), pages 220-233.
    14. Michels-Brito, Adriane & Rodriguez, Daniel Andrés & Cruz Junior, Wellington Luís & Nildo de Souza Vianna, João, 2021. "The climate change potential effects on the run-of-river plant and the environmental and economic dimensions of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    15. Ortega, Margarita & del Río, Pablo & Montero, Eduardo A., 2013. "Assessing the benefits and costs of renewable electricity. The Spanish case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 294-304.
    16. Yu, Bing & Xu, Linyu, 2016. "Review of ecological compensation in hydropower development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 729-738.
    17. Garces-Voisenat, Juan-Pedro & Mukherjee, Zinnia, 2016. "Paying for green energy: The case of the Chilean Patagonia," Journal of Policy Modeling, Elsevier, vol. 38(2), pages 397-414.
    18. Nir Becker & David Soloveitchik & Moshe Olshansky, 2012. "A Weighted Average Incorporation of Pollution Costs into the Electrical Expansion Planning," Energy & Environment, , vol. 23(1), pages 1-15, January.
    19. Rodgers, Mark & Coit, David & Felder, Frank & Carlton, Annmarie, 2019. "Assessing the effects of power grid expansion on human health externalities," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 92-104.
    20. Sovacool, Benjamin K. & Lipson, Matthew M. & Chard, Rose, 2019. "Temporality, vulnerability, and energy justice in household low carbon innovations," Energy Policy, Elsevier, vol. 128(C), pages 495-504.

    More about this item

    Keywords

    fishing activity; opportunity cost; forecast; Amazon.;
    All these keywords.

    JEL classification:

    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2020-02-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.