IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v9y2020i1ne362.html
   My bibliography  Save this article

Risk mitigation in the electricity market driven by new renewable energy sources

Author

Listed:
  • Nikola Krečar
  • Andrej F. Gubina

Abstract

An important indicator of supply and demand uncertainty on electricity markets is risk premium (RP), an integral part of electricity price. The level of RP is describing the risk the market actors expect in the future due to the market uncertainties. With the electricity market price behavior rapidly changing, the rising market supply uncertainty is increasing the volatility of RP. To better understand this behavior, power market participants need new models that will efficiently use the information available in the processes driving the electricity price and RP and to explain the influence of RES uncertainties on the future RP and electricity prices. A decade ago, researchers investigating RP focused primarily on the uncertainties arising from consumption forecast and generation outages. RES share in generation mix was small and its influence on uncertainty was negligible, leading to much lower volatilities of RP than today. With the increasing influence of RES, typically exhibiting variability on a sub‐hourly level, traditional models using daily electricity price to calculate RP were becoming inadequate. In this dynamic period of electricity market transformation, this paper highlights the importance of RP signals to market actors. A stochastic method for RP calculation is discussed with the associated RP model, driven by the intraday dynamics. An example of the RP signal is presented on historical price data from the German electricity market, highlighting uncertainty pattern developed over the years. With such an approach, the market actors can adjust their trading strategies thus mitigating their market risk exposure. This article is categorized under: Energy Systems Economics > Economics and Policy Energy Efficiency > Economics and Policy Energy Systems Analysis > Economics and Policy

Suggested Citation

  • Nikola Krečar & Andrej F. Gubina, 2020. "Risk mitigation in the electricity market driven by new renewable energy sources," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
  • Handle: RePEc:bla:wireae:v:9:y:2020:i:1:n:e362
    DOI: 10.1002/wene.362
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.362
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.362?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Menegaki, Angeliki N., 2011. "Growth and renewable energy in Europe: A random effect model with evidence for neutrality hypothesis," Energy Economics, Elsevier, vol. 33(2), pages 257-263, March.
    2. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    3. Pietz, Matthäus, 2009. "Risk premia in the German electricity futures market," CEFS Working Paper Series 2009-07, Technische Universität München (TUM), Center for Entrepreneurial and Financial Studies (CEFS).
    4. Huisman, Ronald & Kilic, Mehtap, 2012. "Electricity Futures Prices: Indirect Storability, Expectations, and Risk Premiums," Energy Economics, Elsevier, vol. 34(4), pages 892-898.
    5. Müller, Gernot & Seibert, Armin, 2019. "Bayesian estimation of stable CARMA spot models for electricity prices," Energy Economics, Elsevier, vol. 78(C), pages 267-277.
    6. Weron, Rafał & Zator, Michał, 2014. "Revisiting the relationship between spot and futures prices in the Nord Pool electricity market," Energy Economics, Elsevier, vol. 44(C), pages 178-190.
    7. Benth, Fred Espen & Kiesel, Rüdiger & Nazarova, Anna, 2012. "A critical empirical study of three electricity spot price models," Energy Economics, Elsevier, vol. 34(5), pages 1589-1616.
    8. Brancucci Martinez-Anido, Carlo & Brinkman, Greg & Hodge, Bri-Mathias, 2016. "The impact of wind power on electricity prices," Renewable Energy, Elsevier, vol. 94(C), pages 474-487.
    9. Borovkova, Svetlana & Schmeck, Maren Diane, 2017. "Electricity price modeling with stochastic time change," Energy Economics, Elsevier, vol. 63(C), pages 51-65.
    10. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    11. Botterud, Audun & Kristiansen, Tarjei & Ilic, Marija D., 2010. "The relationship between spot and futures prices in the Nord Pool electricity market," Energy Economics, Elsevier, vol. 32(5), pages 967-978, September.
    12. Weron, Rafal & Misiorek, Adam, 2008. "Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 744-763.
    13. Pirrong, Craig & Jermakyan, Martin, 2008. "The price of power: The valuation of power and weather derivatives," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2520-2529, December.
    14. Tomi Medved & Gašper Artač & Andrej F. Gubina, 2018. "The use of intelligent aggregator agents for advanced control of demand response," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(3), May.
    15. Bunn, Derek W. & Chen, Dipeng, 2013. "The forward premium in electricity futures," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 173-186.
    16. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    17. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    18. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, August.
    19. Mauritzen, Johannes, 2010. "What happens when it's Windy in Denmark? An Empirical Analysis of Wind Power on Price Volatility in the Nordic Electricity Market," Discussion Papers 2010/18, Norwegian School of Economics, Department of Business and Management Science.
    20. Sara Dolnicar & Bettina Grün & Friedrich Leisch, 2018. "Market Segmentation Analysis," Management for Professionals, in: Market Segmentation Analysis, chapter 0, pages 11-22, Springer.
    21. Woll, Oliver, 2015. "Mean-risk hedging strategies in electricity markets with limited liquidity," ZEW Discussion Papers 15-056, ZEW - Leibniz Centre for European Economic Research.
    22. Alvaro Escribano & J. Ignacio Peña & Pablo Villaplana, 2011. "Modelling Electricity Prices: International Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 622-650, October.
    23. Olav H. Hohmeyer & Sönke Bohm, 2015. "Trends toward 100% renewable electricity supply in Germany and Europe: a paradigm shift in energy policies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(1), pages 74-97, January.
    24. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    25. Sara Dolnicar & Bettina Grün & Friedrich Leisch, 2018. "Market Segmentation Analysis," Management for Professionals, Springer, number 978-981-10-8818-6, December.
    26. Rintamäki, Tuomas & Siddiqui, Afzal S. & Salo, Ahti, 2017. "Does renewable energy generation decrease the volatility of electricity prices? An analysis of Denmark and Germany," Energy Economics, Elsevier, vol. 62(C), pages 270-282.
    27. Lucia, Julio J. & Torró, Hipòlit, 2011. "On the risk premium in Nordic electricity futures prices," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 750-763, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahnazi, Rouhollah & Alimohammadlou, Moslem, 2022. "Investigating risks in renewable energy in oil-producing countries through multi-criteria decision-making methods based on interval type-2 fuzzy sets: A case study of Iran," Renewable Energy, Elsevier, vol. 191(C), pages 1009-1027.
    2. Arriet, Andrea & Matis, Timothy I. & Feijoo, Felipe, 2024. "Electricity sector impacts of water taxation for natural gas supply under high renewable generation," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Algieri, Bernardina & Leccadito, Arturo & Tunaru, Diana, 2021. "Risk premia in electricity derivatives markets," Energy Economics, Elsevier, vol. 100(C).
    2. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    3. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    4. George Daskalakis, Lazaros Symeonidis, Raphael N. Markellos, 2015. "Electricity futures prices in an emissions constrained economy: Evidence from European power markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    5. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    6. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Technology.
    7. Wei Wei & Asger Lunde, 2020. "Identifying Risk Factors and Their Premia: A Study on Electricity Prices," Monash Econometrics and Business Statistics Working Papers 10/20, Monash University, Department of Econometrics and Business Statistics.
    8. Pawel Maryniak & Stefan Trueck & Rafal Weron, 2016. "Carbon pricing, forward risk premiums and pass-through rates in Australian electricity futures markets," HSC Research Reports HSC/16/10, Hugo Steinhaus Center, Wroclaw University of Technology.
    9. Hosius, Emil & Seebaß, Johann V. & Wacker, Benjamin & Schlüter, Jan Chr., 2023. "The impact of offshore wind energy on Northern European wholesale electricity prices," Applied Energy, Elsevier, vol. 341(C).
    10. Lehna, Malte & Scheller, Fabian & Herwartz, Helmut, 2022. "Forecasting day-ahead electricity prices: A comparison of time series and neural network models taking external regressors into account," Energy Economics, Elsevier, vol. 106(C).
    11. Bonaldo, Cinzia & Caporin, Massimiliano & Fontini, Fulvio, 2022. "The relationship between day-ahead and future prices in electricity markets: An empirical analysis on Italy, France, Germany, and Switzerland," Energy Economics, Elsevier, vol. 110(C).
    12. Maryniak, Paweł & Trück, Stefan & Weron, Rafał, 2019. "Carbon pricing and electricity markets — The case of the Australian Clean Energy Bill," Energy Economics, Elsevier, vol. 79(C), pages 45-58.
    13. Ioannidis, Filippos & Kosmidou, Kyriaki & Savva, Christos & Theodossiou, Panayiotis, 2021. "Electricity pricing using a periodic GARCH model with conditional skewness and kurtosis components," Energy Economics, Elsevier, vol. 95(C).
    14. Hinderks, W.J. & Wagner, A., 2020. "Factor models in the German electricity market: Stylized facts, seasonality, and calibration," Energy Economics, Elsevier, vol. 85(C).
    15. Jenny Winkler & Rouven Emmerich & Mario Ragwitz & Benjamin Pfluger & Christian Senft, 2017. "Beyond the day-ahead market – effects of revenue maximisation of the marketing of renewables on electricity markets," Energy & Environment, , vol. 28(1-2), pages 110-144, March.
    16. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    17. Zhang, Yue & Farnoosh, Arash, 2019. "Analyzing the dynamic impact of electricity futures on revenue and risk of renewable energy in China," Energy Policy, Elsevier, vol. 132(C), pages 678-690.
    18. Kath, Christopher & Ziel, Florian, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Energy Economics, Elsevier, vol. 76(C), pages 411-423.
    19. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2022. "The role of electricity flows and renewable electricity production in the behaviour of electricity prices in Spain," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 885-900.
    20. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:9:y:2020:i:1:n:e362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.