IDEAS home Printed from https://ideas.repec.org/a/bla/presci/v88y2009i1p85-97.html
   My bibliography  Save this article

Maximising coverage of spatial demand for service

Author

Listed:
  • Daoqin Tong
  • Alan T. Murray

Abstract

How to represent geographic space has long been an issue in location modelling. Facilities, demand and/or the region of interest are often abstracted using aggregated points. However, substantial errors can be introduced, and obtained solutions could be dependent on the degree of aggregation. To address this, geographic representation of space is undergoing renewed research interest in spatial analysis and modelling. In this article the maximal coverage problem is studied, with a particular focus on demand coverage representation. Due to the limitations of existing modelling approaches for examining the coverage of space, there exist significant discrepancies between what is modelled and actual geographic coverage. In order to accurately reflect the mechanism of maximal coverage for spatial objects (points, lines or polygons), we introduce a new model explicitly accounting for joint service provided by multiple facilities. The new model can be viewed as an extension of existing approaches, but also a generalisation. An application to warning siren siting is carried out to demonstrate the merits of this new approach.

Suggested Citation

  • Daoqin Tong & Alan T. Murray, 2009. "Maximising coverage of spatial demand for service," Papers in Regional Science, Wiley Blackwell, vol. 88(1), pages 85-97, March.
  • Handle: RePEc:bla:presci:v:88:y:2009:i:1:p:85-97
    DOI: 10.1111/j.1435-5957.2008.00168.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1435-5957.2008.00168.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1435-5957.2008.00168.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alan T. Murray & Morton E. O'Kelly, 2002. "Assessing representation error in point-based coverage modeling," Journal of Geographical Systems, Springer, vol. 4(2), pages 171-191, June.
    2. Sándor P. Fekete & Joseph S. B. Mitchell & Karin Beurer, 2005. "On the Continuous Fermat-Weber Problem," Operations Research, INFORMS, vol. 53(1), pages 61-76, February.
    3. Bilal Farhan & Alan Murray, 2006. "Distance decay and coverage in facility location planning," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 40(2), pages 279-295, June.
    4. F. Robert Dwyer & James R. Evans, 1981. "A Branch and Bound Algorithm for the List Selection Problem in Direct Mail Advertising," Management Science, INFORMS, vol. 27(6), pages 658-667, June.
    5. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    6. Bennett, Vivienne L. & Eaton, David J. & Church, Richard L., 1982. "Selecting sites for rural health workers," Social Science & Medicine, Elsevier, vol. 16(1), pages 63-72, January.
    7. S. L. Hakimi, 1965. "Optimum Distribution of Switching Centers in a Communication Network and Some Related Graph Theoretic Problems," Operations Research, INFORMS, vol. 13(3), pages 462-475, June.
    8. Carrizosa, E. & Munoz-Marquez, M. & Puerto, J., 1998. "The Weber problem with regional demand," European Journal of Operational Research, Elsevier, vol. 104(2), pages 358-365, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murray, Alan T. & Feng, Xin, 2016. "Public street lighting service standard assessment and achievement," Socio-Economic Planning Sciences, Elsevier, vol. 53(C), pages 14-22.
    2. Chevalier, Philippe & Thomas, Isabelle & Geraets, David & Goetghebeur, Els & Janssens, Olivier & Peeters, Dominique & Plastria, Frank, 2012. "Locating fire stations: An integrated approach for Belgium," Socio-Economic Planning Sciences, Elsevier, vol. 46(2), pages 173-182.
    3. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.
    4. Manish Bansal & Kiavash Kianfar, 2017. "Planar Maximum Coverage Location Problem with Partial Coverage and Rectangular Demand and Service Zones," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 152-169, February.
    5. Hammad, Ahmed W A & Akbarnezhad, Ali & Rey, David, 2017. "Sustainable urban facility location: Minimising noise pollution and network congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 38-59.
    6. Jiwon Baik & Alan T. Murray, 2022. "Locating a facility to simultaneously address access and coverage goals," Papers in Regional Science, Wiley Blackwell, vol. 101(5), pages 1199-1217, October.
    7. Luke Shillington & Daoqin Tong, 2011. "Maximizing Wireless Mesh Network Coverage," International Regional Science Review, , vol. 34(4), pages 419-437, October.
    8. Zhong, Qing & Tong, Daoqin, 2020. "Spatial layout optimization for solar photovoltaic (PV) panel installation," Renewable Energy, Elsevier, vol. 150(C), pages 1-11.
    9. Ran Wei & Alan Murray & Rajan Batta, 2014. "A bounding-based solution approach for the continuous arc covering problem," Journal of Geographical Systems, Springer, vol. 16(2), pages 161-182, April.
    10. Ran Wei, 2016. "Coverage Location Models," International Regional Science Review, , vol. 39(1), pages 48-76, January.
    11. Alan T. Murray & Daoqin Tong & Kamyoung Kim, 2010. "Enhancing Classic Coverage Location Models," International Regional Science Review, , vol. 33(2), pages 115-133, April.
    12. Murray, Alan T. & Wei, Ran, 2013. "A computational approach for eliminating error in the solution of the location set covering problem," European Journal of Operational Research, Elsevier, vol. 224(1), pages 52-64.
    13. Karatas, Mumtaz & Eriskin, Levent, 2023. "Linear and piecewise linear formulations for a hierarchical facility location and sizing problem," Omega, Elsevier, vol. 118(C).
    14. Huanfa Chen & Alan T. Murray & Rui Jiang, 2021. "Open-source approaches for location cover models: capabilities and efficiency," Journal of Geographical Systems, Springer, vol. 23(3), pages 361-380, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Yao & Alan T. Murray, 2014. "Serving regional demand in facility location," Papers in Regional Science, Wiley Blackwell, vol. 93(3), pages 643-662, August.
    2. Jing Yao & Alan T. Murray, 2014. "Locational Effectiveness of Clinics Providing Sexual and Reproductive Health Services to Women in Rural Mozambique," International Regional Science Review, , vol. 37(2), pages 172-193, April.
    3. Richard Francis & Timothy Lowe, 2014. "Comparative error bound theory for three location models: continuous demand versus discrete demand," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 144-169, April.
    4. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    5. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.
    6. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    7. Michael Brusco & J Dennis Cradit & Douglas Steinley, 2021. "A comparison of 71 binary similarity coefficients: The effect of base rates," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-19, April.
    8. Wen, Meilin & Iwamura, Kakuzo, 2008. "Fuzzy facility location-allocation problem under the Hurwicz criterion," European Journal of Operational Research, Elsevier, vol. 184(2), pages 627-635, January.
    9. Behrens, Kristian, 2007. "On the location and lock-in of cities: Geography vs transportation technology," Regional Science and Urban Economics, Elsevier, vol. 37(1), pages 22-45, January.
    10. Xin Feng & Alan T. Murray, 2018. "Allocation using a heterogeneous space Voronoi diagram," Journal of Geographical Systems, Springer, vol. 20(3), pages 207-226, July.
    11. Wei Ding & Ke Qiu, 2020. "Approximating the asymmetric p-center problem in parameterized complete digraphs," Journal of Combinatorial Optimization, Springer, vol. 40(1), pages 21-35, July.
    12. Averbakh, Igor & Berman, Oded, 1996. "Locating flow-capturing units on a network with multi-counting and diminishing returns to scale," European Journal of Operational Research, Elsevier, vol. 91(3), pages 495-506, June.
    13. Nguyen Thai An & Nguyen Mau Nam & Xiaolong Qin, 2020. "Solving k-center problems involving sets based on optimization techniques," Journal of Global Optimization, Springer, vol. 76(1), pages 189-209, January.
    14. Peeters, Peter H., 1998. "Some new algorithms for location problems on networks," European Journal of Operational Research, Elsevier, vol. 104(2), pages 299-309, January.
    15. Knight, V.A. & Harper, P.R. & Smith, L., 2012. "Ambulance allocation for maximal survival with heterogeneous outcome measures," Omega, Elsevier, vol. 40(6), pages 918-926.
    16. Milosav Georgijevic & Sanja Bojic & Dejan Brcanov, 2013. "The location of public logistic centers: an expanded capacity-limited fixed cost location-allocation modeling approach," Transportation Planning and Technology, Taylor & Francis Journals, vol. 36(2), pages 218-229, April.
    17. Mulder, H.M. & Pelsmajer, M.J. & Reid, K.B., 2006. "Generalized centrality in trees," Econometric Institute Research Papers EI 2006-16, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Amir Hossein Sadeghi & Ziyuan Sun & Amirreza Sahebi-Fakhrabad & Hamid Arzani & Robert Handfield, 2023. "A Mixed-Integer Linear Formulation for a Dynamic Modified Stochastic p-Median Problem in a Competitive Supply Chain Network Design," Logistics, MDPI, vol. 7(1), pages 1-24, March.
    19. Jiamin Wang, 2007. "The (beta)-Reliable Median on a Network with Discrete Probabilistic Demand Weights," Operations Research, INFORMS, vol. 55(5), pages 966-975, October.
    20. Mingjian Wu & Tae J. Kwon & Karim El-Basyouny, 2020. "A Citywide Location-Allocation Framework for Driver Feedback Signs: Optimizing Safety and Coverage of Vulnerable Road Users," Sustainability, MDPI, vol. 12(24), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:presci:v:88:y:2009:i:1:p:85-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1056-8190 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.