IDEAS home Printed from https://ideas.repec.org/a/kap/jgeosy/v23y2021i3d10.1007_s10109-021-00350-w.html
   My bibliography  Save this article

Open-source approaches for location cover models: capabilities and efficiency

Author

Listed:
  • Huanfa Chen

    (University College London)

  • Alan T. Murray

    (University of California at Santa Barbara)

  • Rui Jiang

    (University College London)

Abstract

Location cover models are aimed at siting facilities so as to provide service to demand efficiently. These models are crucial in the management, planning and decision-making of service systems in public and private sectors. As a result, location cover models have been incorporated in a range of GIS tools, either closed or open source. Among them, open-source tools are advantageous due to transparency and reproducibility. Nonetheless, the capabilities and limitations of location cover tools remain largely unknown, necessitating further investigation and assessment. To this end, this paper provides an overview of the open-source tools that are capable of structuring and solving location cover models. Case studies are provided to demonstrate access of location models through different open-source tools as well as exploring solution quality, scalability, computing performance and reproducibility. Directions for improving location cover models accessible through open-source tools are summarized based on this review.

Suggested Citation

  • Huanfa Chen & Alan T. Murray & Rui Jiang, 2021. "Open-source approaches for location cover models: capabilities and efficiency," Journal of Geographical Systems, Springer, vol. 23(3), pages 361-380, July.
  • Handle: RePEc:kap:jgeosy:v:23:y:2021:i:3:d:10.1007_s10109-021-00350-w
    DOI: 10.1007/s10109-021-00350-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10109-021-00350-w
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10109-021-00350-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    2. Ron Buliung & Tarmo Remmel, 2008. "Open source, spatial analysis, and activity-travel behaviour research: capabilities of the aspace package," Journal of Geographical Systems, Springer, vol. 10(2), pages 191-216, June.
    3. Sergio Rey, 2009. "Show me the code: spatial analysis and open source," Journal of Geographical Systems, Springer, vol. 11(2), pages 191-207, June.
    4. Manfred M. Fischer & Arthur Getis (ed.), 2010. "Handbook of Applied Spatial Analysis," Springer Books, Springer, number 978-3-642-03647-7, June.
    5. repec:rre:publsh:v:37:y:2007:i:1:p:5-27 is not listed on IDEAS
    6. Daoqin Tong & Alan T. Murray, 2009. "Maximising coverage of spatial demand for service," Papers in Regional Science, Wiley Blackwell, vol. 88(1), pages 85-97, March.
    7. Richard L. Church & Alan Murray, 2018. "Location Covering Models," Advances in Spatial Science, Springer, number 978-3-319-99846-6.
    8. Alan Murray, 2010. "Advances in location modeling: GIS linkages and contributions," Journal of Geographical Systems, Springer, vol. 12(3), pages 335-354, September.
    9. Murray, Alan T. & Wei, Ran, 2013. "A computational approach for eliminating error in the solution of the location set covering problem," European Journal of Operational Research, Elsevier, vol. 224(1), pages 52-64.
    10. Richard Church & Charles R. Velle, 1974. "The Maximal Covering Location Problem," Papers in Regional Science, Wiley Blackwell, vol. 32(1), pages 101-118, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alan T. Murray & Antonio Ortiz & Seonga Cho, 2022. "Enhancing strategic defensive positioning and performance in the outfield," Journal of Geographical Systems, Springer, vol. 24(2), pages 223-240, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiwon Baik & Alan T. Murray, 2022. "Locating a facility to simultaneously address access and coverage goals," Papers in Regional Science, Wiley Blackwell, vol. 101(5), pages 1199-1217, October.
    2. Murray, Alan T. & Feng, Xin, 2016. "Public street lighting service standard assessment and achievement," Socio-Economic Planning Sciences, Elsevier, vol. 53(C), pages 14-22.
    3. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.
    4. Eliş, Haluk & Tansel, Barbaros & Oğuz, Osman & Güney, Mesut & Kian, Ramez, 2021. "On guarding real terrains: The terrain guarding and the blocking path problems," Omega, Elsevier, vol. 102(C).
    5. Sadeghi, Mohammad & Yaghoubi, Saeed, 2024. "Optimization models for cloud seeding network design and operations," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1146-1167.
    6. Ran Wei, 2016. "Coverage Location Models," International Regional Science Review, , vol. 39(1), pages 48-76, January.
    7. Muren, & Li, Hao & Mukhopadhyay, Samar K. & Wu, Jian-jun & Zhou, Li & Du, Zhiping, 2020. "Balanced maximal covering location problem and its application in bike-sharing," International Journal of Production Economics, Elsevier, vol. 223(C).
    8. Heewon Chea & Hyun Kim & Shih-Lung Shaw & Yongwan Chun, 2022. "Assessing Trauma Center Accessibility for Healthcare Equity Using an Anti-Covering Approach," IJERPH, MDPI, vol. 19(3), pages 1-21, January.
    9. Xu, Jing & Murray, Alan T. & Church, Richard L. & Wei, Ran, 2023. "Service allocation equity in location coverage analytics," European Journal of Operational Research, Elsevier, vol. 305(1), pages 21-37.
    10. KC, Kiran & Corcoran, Jonathan & Chhetri, Prem, 2020. "Measuring the spatial accessibility to fire stations using enhanced floating catchment method," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    11. Pludow, B. Amelia & Murray, Alan T. & Church, Richard L., 2022. "Service quality modeling to support optimizing facility location in a microscale environment," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    12. Alan T. Murray & Daoqin Tong & Kamyoung Kim, 2010. "Enhancing Classic Coverage Location Models," International Regional Science Review, , vol. 33(2), pages 115-133, April.
    13. Blanco, Víctor & Gázquez, Ricardo & Saldanha-da-Gama, Francisco, 2023. "Multi-type maximal covering location problems: Hybridizing discrete and continuous problems," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1040-1054.
    14. Ran Wei & Alan Murray & Rajan Batta, 2014. "A bounding-based solution approach for the continuous arc covering problem," Journal of Geographical Systems, Springer, vol. 16(2), pages 161-182, April.
    15. Hamid Mousavi & Soroush Avakh Darestani & Parham Azimi, 2021. "An artificial neural network based mathematical model for a stochastic health care facility location problem," Health Care Management Science, Springer, vol. 24(3), pages 499-514, September.
    16. Chen, Liang & Chen, Sheng-Jie & Chen, Wei-Kun & Dai, Yu-Hong & Quan, Tao & Chen, Juan, 2023. "Efficient presolving methods for solving maximal covering and partial set covering location problems," European Journal of Operational Research, Elsevier, vol. 311(1), pages 73-87.
    17. Erhan Erkut & Armann Ingolfsson & Güneş Erdoğan, 2008. "Ambulance location for maximum survival," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(1), pages 42-58, February.
    18. Roy, Sandeepan & Maji, Avijit, 2019. "Optimization of High-Speed Railway Station Location Selection Based on Accessibility and Environmental Impact," ADBI Working Papers 953, Asian Development Bank Institute.
    19. Nelas, José & Dias, Joana, 2020. "Optimal Emergency Vehicles Location: An approach considering the hierarchy and substitutability of resources," European Journal of Operational Research, Elsevier, vol. 287(2), pages 583-599.
    20. Ranon Jientrakul & Chumpol Yuangyai & Klongkwan Boonkul & Pakinai Chaicharoenwut & Suriyaphong Nilsang & Sittiporn Pimsakul, 2022. "Integrating Spatial Risk Factors with Social Media Data Analysis for an Ambulance Allocation Strategy: A Case Study in Bangkok," Sustainability, MDPI, vol. 14(16), pages 1-15, August.

    More about this item

    Keywords

    Spatial optimisation; Location cover model; Open source; GIS;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:23:y:2021:i:3:d:10.1007_s10109-021-00350-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.