IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v86y2024i1p44-73.html
   My bibliography  Save this article

Non‐parametric Estimator for Conditional Mode with Parametric Features

Author

Listed:
  • Tao Wang

Abstract

We in this paper propose a new approach for estimating conditional mode non‐parametrically to capture the ‘most likely’ effect built on local linear approximation, in which a parametric pilot modal regression is locally adjusted through a kernel smoothing fit to potentially reduce the bias asymptotically without affecting the variance of the estimator. Specifically, we first estimate a parametric modal regression utilizing prior information from initial studies or economic analysis, and then estimate the non‐parametric modal function based on the additive correction by eliminating the parametric feature. We derive the asymptotic normal distribution of the proposed modal estimator for both fixed and estimated parametric feature cases, and demonstrate that there is substantial room for bias reduction under certain regularity conditions. We numerically estimate the suggested modal regression model with the use of a modified modal‐expectation‐maximization (MEM) algorithm. Monte Carlo simulations and one empirical analysis are presented to illustrate the finite sample performance of the developed modal estimator. Several extensions, including multiplicative correction, generalized guidance, modal‐based robust regression and the incorporation of categorical covariates, are also discussed for the sake of completeness.

Suggested Citation

  • Tao Wang, 2024. "Non‐parametric Estimator for Conditional Mode with Parametric Features," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(1), pages 44-73, February.
  • Handle: RePEc:bla:obuest:v:86:y:2024:i:1:p:44-73
    DOI: 10.1111/obes.12577
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/obes.12577
    Download Restriction: no

    File URL: https://libkey.io/10.1111/obes.12577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:86:y:2024:i:1:p:44-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.