IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.05736.html
   My bibliography  Save this paper

Convolution Mode Regression

Author

Listed:
  • Eduardo Schirmer Finn
  • Eduardo Horta

Abstract

For highly skewed or fat-tailed distributions, mean or median-based methods often fail to capture the central tendencies in the data. Despite being a viable alternative, estimating the conditional mode given certain covariates (or mode regression) presents significant challenges. Nonparametric approaches suffer from the "curse of dimensionality", while semiparametric strategies often lead to non-convex optimization problems. In order to avoid these issues, we propose a novel mode regression estimator that relies on an intermediate step of inverting the conditional quantile density. In contrast to existing approaches, we employ a convolution-type smoothed variant of the quantile regression. Our estimator converges uniformly over the design points of the covariates and, unlike previous quantile-based mode regressions, is uniform with respect to the smoothing bandwidth. Additionally, the Convolution Mode Regression is dimension-free, carries no issues regarding optimization and preliminary simulations suggest the estimator is normally distributed in finite samples.

Suggested Citation

  • Eduardo Schirmer Finn & Eduardo Horta, 2024. "Convolution Mode Regression," Papers 2412.05736, arXiv.org.
  • Handle: RePEc:arx:papers:2412.05736
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.05736
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.05736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.