IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v44y2025i4p1578-1601.html
   My bibliography  Save this article

Forecasting the Confirmed COVID‐19 Cases Using Modal Regression

Author

Listed:
  • Xin Jing
  • Jin Seo Cho

Abstract

This study utilizes modal regression to forecast the cumulative confirmed COVID‐19 cases in Canada, Japan, South Korea, and the United States. The objective is to improve the accuracy of the forecasts compared to standard mean and median regressions. To evaluate the performance of the forecasts, we conduct simulations and introduce a metric called the coverage quantile function (CQF), which is optimized using modal regression. By applying modal regression to popular time‐series models for COVID‐19 data, we provide empirical evidence that the forecasts generated by the modal regression outperform those produced by the mean and median regressions in terms of the CQF. This finding addresses the limitations of the mean and median regression forecasts.

Suggested Citation

  • Xin Jing & Jin Seo Cho, 2025. "Forecasting the Confirmed COVID‐19 Cases Using Modal Regression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(4), pages 1578-1601, July.
  • Handle: RePEc:wly:jforec:v:44:y:2025:i:4:p:1578-1601
    DOI: 10.1002/for.3261
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3261
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cho, Jin Seo & Kim, Tae-hwan & Shin, Yongcheol, 2015. "Quantile cointegration in the autoregressive distributed-lag modeling framework," Journal of Econometrics, Elsevier, vol. 188(1), pages 281-300.
    2. Hamermesh, Daniel S., 2020. "Lockdowns, Loneliness and Life Satisfaction," IZA Discussion Papers 13140, Institute of Labor Economics (IZA).
    3. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    4. Yousefpour, Amin & Jahanshahi, Hadi & Bekiros, Stelios, 2020. "Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    5. Weixin Yao & Longhai Li, 2014. "A New Regression Model: Modal Linear Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 656-671, September.
    6. Guojun He & Yuhang Pan & Takanao Tanaka, 2020. "COVID-19, City Lockdowns, And Air Pollution: Evidence from China," HKUST IEMS Working Paper Series 2020-72, HKUST Institute for Emerging Market Studies, revised Mar 2020.
    7. Gning, Lucien & Ndour, Cheikh & Tchuenche, J.M., 2022. "Modeling COVID-19 daily cases in Senegal using a generalized Waring regression model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    8. Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H., 2020. "Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    9. Brodeur, Abel & Cook, Nikolai & Wright, Taylor, 2021. "On the effects of COVID-19 safer-at-home policies on social distancing, car crashes and pollution," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
    10. Abolfazl Mollalo & Kiara M. Rivera & Behzad Vahedi, 2020. "Artificial Neural Network Modeling of Novel Coronavirus (COVID-19) Incidence Rates across the Continental United States," IJERPH, MDPI, vol. 17(12), pages 1-13, June.
    11. Salah Khardani & Anne Françoise Yao, 2017. "Non linear parametric mode regression," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(6), pages 3006-3024, March.
    12. Aman Ullah & Tao Wang & Weixin Yao, 2021. "Modal regression for fixed effects panel data," Empirical Economics, Springer, vol. 60(1), pages 261-308, January.
    13. Aman Ullah & Tao Wang & Weixin Yao, 2022. "Nonlinear modal regression for dependent data with application for predicting COVID‐19," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1424-1453, July.
    14. Daniel S. Hamermesh, 2020. "Life satisfaction, loneliness and togetherness, with an application to Covid-19 lock-downs," Review of Economics of the Household, Springer, vol. 18(4), pages 983-1000, December.
    15. Haiyang Lu & Peng Nie & Long Qian, 2021. "Do Quarantine Experiences and Attitudes Towards COVID-19 Affect the Distribution of Mental Health in China? A Quantile Regression Analysis," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 16(5), pages 1925-1942, October.
    16. Azimli, Asil, 2020. "The impact of COVID-19 on the degree of dependence and structure of risk-return relationship: A quantile regression approach," Finance Research Letters, Elsevier, vol. 36(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Jing & Jin Seo Cho, 2025. "Quantile ARDL Estimation of the Relationship between the Confirmed COVID-19 Cases and Deaths in the U.S," Working papers 2025rwp-247, Yonsei University, Yonsei Economics Research Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
    2. Brodeur, Abel & Clark, Andrew E. & Fleche, Sarah & Powdthavee, Nattavudh, 2021. "COVID-19, lockdowns and well-being: Evidence from Google Trends," Journal of Public Economics, Elsevier, vol. 193(C).
    3. Abel Brodeur & David Gray & Anik Islam & Suraiya Bhuiyan, 2021. "A literature review of the economics of COVID‐19," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1007-1044, September.
    4. Brodeur, Abel & Cook, Nikolai & Wright, Taylor, 2021. "On the effects of COVID-19 safer-at-home policies on social distancing, car crashes and pollution," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
    5. Ullah, Aman & Wang, Tao & Yao, Weixin, 2023. "Semiparametric partially linear varying coefficient modal regression," Journal of Econometrics, Elsevier, vol. 235(2), pages 1001-1026.
    6. Zhe Sun & Yundong Tu, 2024. "Factors in Fashion: Factor Analysis towards the Mode," Papers 2409.19287, arXiv.org.
    7. Wang, Tao, 2025. "Semi-functional varying coefficient mode-based regression," Journal of Multivariate Analysis, Elsevier, vol. 207(C).
    8. Aman Ullah & Tao Wang & Weixin Yao, 2022. "Nonlinear modal regression for dependent data with application for predicting COVID‐19," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1424-1453, July.
    9. Tao Wang, 2024. "Nonlinear kernel mode‐based regression for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(2), pages 189-213, March.
    10. Hongpeng Yuan & Sijia Xiang & Weixin Yao, 2024. "A new bandwidth selection method for nonparametric modal regression based on generalized hyperbolic distributions," Computational Statistics, Springer, vol. 39(4), pages 1729-1746, June.
    11. Tao Wang, 2024. "Non‐parametric Estimator for Conditional Mode with Parametric Features," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(1), pages 44-73, February.
    12. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    13. Mathias Huebener & Sevrin Waights & C. Katharina Spiess & Nico A. Siegel & Gert G. Wagner, 2021. "Parental well-being in times of Covid-19 in Germany," Review of Economics of the Household, Springer, vol. 19(1), pages 91-122, March.
    14. Enghin Atalay, 2024. "A twenty-first century of solitude? Time alone and together in the United States," Journal of Population Economics, Springer;European Society for Population Economics, vol. 37(1), pages 1-33, March.
    15. George Davis, 2021. "The many ways COVID-19 affects households: consumption, time, and health outcomes," Review of Economics of the Household, Springer, vol. 19(2), pages 281-289, June.
    16. Victoria Costoya & Lucía Echeverría & María Edo & Ana Rocha & Agustina Thailinger, 2022. "Gender Gaps within Couples: Evidence of Time Re-allocations during COVID-19 in Argentina," Journal of Family and Economic Issues, Springer, vol. 43(2), pages 213-226, June.
    17. José Ignacio Giménez-Nadal & José Alberto Molina & Jorge Velilla, 2024. "Intermediate activities while commuting," Review of Economics of the Household, Springer, vol. 22(3), pages 1185-1220, September.
    18. Sam Cosaert & Adrián Nieto & Konstantinos Tatsiramos, 2023. "Temperature and Joint Time Use," CESifo Working Paper Series 10464, CESifo.
    19. Jeehoon Han & Caspar Kaiser, 2024. "Time use and happiness: US evidence across three decades," Journal of Population Economics, Springer;European Society for Population Economics, vol. 37(1), pages 1-25, March.
    20. Orçun Muhammet Şimşek & Orhan Koçak & Mustafa Z. Younis, 2021. "The Impact of Interpersonal Cognitive Distortions on Satisfaction with Life and the Mediating Role of Loneliness," Sustainability, MDPI, vol. 13(16), pages 1-18, August.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:44:y:2025:i:4:p:1578-1601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.