IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v83y2013i2p519-526.html
   My bibliography  Save this article

A note on EM algorithm for mixture models

Author

Listed:
  • Yao, Weixin

Abstract

Expectation–maximization (EM) algorithm has been used to maximize the likelihood function or posterior when the model contains unobserved latent variables. One main important application of EM algorithm is to find the maximum likelihood estimator for mixture models. In this article, we propose an EM type algorithm to maximize a class of mixture type objective functions. In addition, we prove the monotone ascending property of the proposed algorithm and discuss some of its applications.

Suggested Citation

  • Yao, Weixin, 2013. "A note on EM algorithm for mixture models," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 519-526.
  • Handle: RePEc:eee:stapro:v:83:y:2013:i:2:p:519-526
    DOI: 10.1016/j.spl.2012.10.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212003896
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linton, Oliver & Xiao, Zhijie, 2007. "A Nonparametric Regression Estimator That Adapts To Error Distribution Of Unknown Form," Econometric Theory, Cambridge University Press, vol. 23(03), pages 371-413, June.
    2. Yingcun Xia, 2004. "Efficient estimation for semivarying-coefficient models," Biometrika, Biometrika Trust, vol. 91(3), pages 661-681, September.
    3. Ao Yuan & Jan G. De Gooijer, 2007. "Semiparametric Regression with Kernel Error Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 841-869.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weixin Yao & Longhai Li, 2014. "A New Regression Model: Modal Linear Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 656-671, September.
    2. Chen, Yixin & Wang, Qin & Yao, Weixin, 2015. "Adaptive estimation for varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 17-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:83:y:2013:i:2:p:519-526. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.