IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v31y2010i1p1-11.html
   My bibliography  Save this article

Bayesian analysis of multivariate Gaussian hidden Markov models with an unknown number of regimes

Author

Listed:
  • Luigi Spezia

Abstract

Multivariate Gaussian hidden Markov models with an unknown number of regimes are introduced here in the Bayesian setting and new efficient reversible jump Markov chain Monte Carlo algorithms for estimating both the dimension and the unknown parameters of the model are presented. Hidden Markov models are an extension of mixture models that can be applied to time series so as to classify the observations in a small number of groups, to understand when change points occur in the dynamics of the series and to model data heterogeneity through the switching among subseries with different means and covariance matrices. These aims can be achieved by assuming that the observed phenomenon is driven by a latent, or hidden, Markov chain. The methodology is illustrated through two different examples of multivariate time series. Copyright Copyright 2009 Blackwell Publishing Ltd

Suggested Citation

  • Luigi Spezia, 2010. "Bayesian analysis of multivariate Gaussian hidden Markov models with an unknown number of regimes," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(1), pages 1-11, January.
  • Handle: RePEc:bla:jtsera:v:31:y:2010:i:1:p:1-11
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9892.2009.00635.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard J. Boys & Daniel A. Henderson, 2004. "A Bayesian Approach to DNA Sequence Segmentation," Biometrics, The International Biometric Society, vol. 60(3), pages 573-581, September.
    2. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 433-465, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:31:y:2010:i:1:p:1-11. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.