IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Semiparametric Estimation in Time-Series Regression with Long-Range Dependence

  • Morten Orregaard Nielsen

We consider semiparametric estimation in time-series regression in the presence of long-range dependence in both the errors and the stochastic regressors. A central limit theorem is established for a class of semiparametric frequency domain-weighted least squares estimates, which includes both narrow-band ordinary least squares and narrow-band generalized least squares as special cases. The estimates are semiparametric in the sense that focus is on the neighbourhood of the origin, and only periodogram ordinates in a degenerating band around the origin are used. This setting differs from earlier studies on time-series regression with long-range dependence, where a fully parametric approach has been employed. The generalized least squares estimate is infeasible when the degree of long-range dependence is unknown and must be estimated in an initial step. In that case, we show that a feasible estimate which has the same asymptotic properties as the infeasible estimate, exists. By Monte Carlo simulation, we evaluate the finite-sample performance of the generalized least squares estimate and the feasible estimate. Copyright 2005 Blackwell Publishing Ltd.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.blackwell-synergy.com/servlet/useragent?func=synergy&synergyAction=showTOC&journalCode=jtsa&volume=26&issue=2&year=2005&part=null
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Wiley Blackwell in its journal Journal of Time Series Analysis.

Volume (Year): 26 (2005)
Issue (Month): 2 (03)
Pages: 279-304

as
in new window

Handle: RePEc:bla:jtsera:v:26:y:2005:i:2:p:279-304
Contact details of provider: Web page: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782

Order Information: Web: http://www.blackwellpublishing.com/subs.asp?ref=0143-9782

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Peter C.B. Phillips, 1985. "Understanding Spurious Regressions in Econometrics," Cowles Foundation Discussion Papers 757, Cowles Foundation for Research in Economics, Yale University.
  2. Hassler, Uwe & Marmol, Francesc & Velasco, Carlos, 2002. "Residual Log-Periodogram Inference for Long-Run-Relationships," Darmstadt Discussion Papers in Economics 37317, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute of Economics (VWL).
  3. Tsay, Wen-Jen & Chung, Ching-Fan, 2000. "The spurious regression of fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 96(1), pages 155-182, May.
  4. Lobato, Ignacio N., 1999. "A semiparametric two-step estimator in a multivariate long memory model," Journal of Econometrics, Elsevier, vol. 90(1), pages 129-153, May.
  5. Hannan, E. J., 1979. "The central limit theorem for time series regression," Stochastic Processes and their Applications, Elsevier, vol. 9(3), pages 281-289, December.
  6. Lobato, I. & Robinson, P. M., 1996. "Averaged periodogram estimation of long memory," Journal of Econometrics, Elsevier, vol. 73(1), pages 303-324, July.
  7. Carlos Velasco, 2003. "Gaussian Semi-parametric Estimation of Fractional Cointegration," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(3), pages 345-378, 05.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:26:y:2005:i:2:p:279-304. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.