IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Semiparametric Sieve-Type GLS Inference in Regressions with Long-Range Dependence

  • George Kapetanios

    ()

    (Queen Mary, University of London)

  • Zacharias Psaradakis

    ()

    (Birkbeck, University of London)

This paper considers the problem of statistical inference in linear regression models whose stochastic regressors and errors may exhibit long-range dependence. A time-domain sieve-type generalized least squares (GLS) procedure is proposed based on an autoregressive approximation to the generating mechanism of the errors. The asymptotic properties of the sieve-type GLS estimator are established. A Monte Carlo study examines the finite-sample properties of the method for testing regression hypotheses.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.econ.qmul.ac.uk/papers/doc/wp587.pdf
Download Restriction: no

Paper provided by Queen Mary University of London, School of Economics and Finance in its series Working Papers with number 587.

as
in new window

Length:
Date of creation: Mar 2007
Date of revision:
Handle: RePEc:qmw:qmwecw:wp587
Contact details of provider: Postal: London E1 4NS
Phone: +44 (0) 20 7882 5096
Fax: +44 (0) 20 8983 3580
Web page: http://www.econ.qmul.ac.uk

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Amemiya, Takeshi, 1973. "Generalized Least Squares with an Estimated Autocovariance Matrix," Econometrica, Econometric Society, vol. 41(4), pages 723-32, July.
  2. Kiefer, Nicholas M. & Bunzel, Helle & Vogelsang, Timothy & Vogelsang, Timothy & Bunzel, Helle, 2000. "Simple Robust Testing of Regression Hypotheses," Staff General Research Papers 1832, Iowa State University, Department of Economics.
  3. Javier Hidalgo & Peter M. Robinson, 2002. "Adapting to Unknown Disturbance Autocorrelation in Regression with Long Memory," Econometrica, Econometric Society, vol. 70(4), pages 1545-1581, July.
  4. Donald W.K. Andrews, 1988. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Cowles Foundation Discussion Papers 877R, Cowles Foundation for Research in Economics, Yale University, revised Jul 1989.
  5. Morten Orregaard Nielsen, 2005. "Semiparametric Estimation in Time-Series Regression with Long-Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(2), pages 279-304, 03.
  6. Donald W.K. Andrews & Christopher J. Monahan, 1990. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Cowles Foundation Discussion Papers 942, Cowles Foundation for Research in Economics, Yale University.
  7. D. S. Poskitt, 2005. "Autoregressive Approximation in Nonstandard Situations: The Non-Invertible and Fractionally Integrated Cases," Monash Econometrics and Business Statistics Working Papers 16/05, Monash University, Department of Econometrics and Business Statistics.
  8. Yongmiao Hong & Halbert White, 2005. "Asymptotic Distribution Theory for Nonparametric Entropy Measures of Serial Dependence," Econometrica, Econometric Society, vol. 73(3), pages 837-901, 05.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:qmw:qmwecw:wp587. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nick Vriend)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.