IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Local Whittle Analysis of Stationary Fractional Cointegration

  • Morten Oerregaard Nielsen

    ()

    (Department of Economics, University of Aarhus, Denmark)

We consider a local Whittle analysis of a stationary fractionally cointegrated model. A two step estimator equivalent to the local Whittle QMLE is proposed to jointly estimate the integration orders of the regressors, the integration order of the errors, and the cointegration vector. The estimator is semiparametric in the sense that it employs local assumptions on the joint spectral density matrix of the regressors and the errors near the zero frequency. We show that, for the entire stationary region of the integration orders, the estimator is asymptotically normal with block diagonal covariance matrix. Thus, the estimates of the integration orders are asymptotically independent of the estimate of the cointegration vector. Furthermore, our estimator of the cointegrating vector is asymptotically normal for a wider range of integration orders than the narrow band frequency domain least squares estimator and is superior with respect to asymptotic variance. An application to financial volatility series is offered.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://ftp.econ.au.dk/afn/wp/02/wp02_8.pdf
Download Restriction: no

Paper provided by School of Economics and Management, University of Aarhus in its series Economics Working Papers with number 2002-8.

as
in new window

Length: 27
Date of creation:
Date of revision:
Handle: RePEc:aah:aarhec:2002-8
Contact details of provider: Web page: http://www.econ.au.dk/afn/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. D Marinucci & Peter M Robinson, 2001. "Semiparametric Fractional Cointegration Analysis," STICERD - Econometrics Paper Series /2001/420, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  2. D Marinucci & Peter M. Robinson, 2001. "Semiparametric fractional cointegration analysis," LSE Research Online Documents on Economics 2269, London School of Economics and Political Science, LSE Library.
  3. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
  4. Carlos Velasco, 2003. "Gaussian Semi-parametric Estimation of Fractional Cointegration," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(3), pages 345-378, 05.
  5. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
  6. D Marinucci & Peter M. Robinson, 1998. "Semiparametric frequency domain analysis of fractional cointegration," LSE Research Online Documents on Economics 2258, London School of Economics and Political Science, LSE Library.
  7. Hassler, Uwe & Marmol, Francesc & Velasco, Carlos, 2002. "Residual Log-Periodogram Inference for Long-Run-Relationships," Darmstadt Discussion Papers in Economics 37317, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute of Economics (VWL).
  8. Michael Dueker & Richard Startz, 1998. "Maximum-Likelihood Estimation Of Fractional Cointegration With An Application To U.S. And Canadian Bond Rates," The Review of Economics and Statistics, MIT Press, vol. 80(3), pages 420-426, August.
  9. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  10. Lobato, I. & Robinson, P. M., 1996. "Averaged periodogram estimation of long memory," Journal of Econometrics, Elsevier, vol. 73(1), pages 303-324, July.
  11. Lobato, Ignacio N., 1999. "A semiparametric two-step estimator in a multivariate long memory model," Journal of Econometrics, Elsevier, vol. 90(1), pages 129-153, May.
  12. Lobato, Ignacio N & Velasco, Carlos, 2000. "Long Memory in Stock-Market Trading Volume," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(4), pages 410-27, October.
  13. Robinson, Peter M. & Yajima, Yoshihiro, 2002. "Determination of cointegrating rank in fractional systems," Journal of Econometrics, Elsevier, vol. 106(2), pages 217-241, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aah:aarhec:2002-8. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.