IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v184y2021i4p1390-1413.html
   My bibliography  Save this article

Propensity score analysis for a semi‐continuous exposure variable: a study of gestational alcohol exposure and childhood cognition

Author

Listed:
  • Tugba Akkaya Hocagil
  • Richard J. Cook
  • Sandra W. Jacobson
  • Joseph L. Jacobson
  • Louise M. Ryan

Abstract

Propensity score methodology has become increasingly popular in recent years as a tool for estimating causal effects in observational studies. Much of the related research has been directed at settings with binary or discrete exposure variables with more recent work involving continuous exposure variables. In environmental epidemiology, a substantial proportion of individuals is often completely unexposed while others may experience heavy exposure leading to an exposure distribution with a point mass at zero and a heavy right tail. We suggest a new approach to handle this type of exposure data by constructing a propensity score based on a two‐part model and show how this model can be used to more reliably adjust for covariates of a semi‐continuous exposure variable. We also consider the case when a misspecified propensity score is used in a regression adjustment and derive an explicit form of the bias. We show that the potential bias gets smaller as the estimated propensity score gets closer to the true expectation of the exposure variable given a set of observed covariates. While this result pertains to a more general setting, we use it to evaluate the potential bias in settings in which the true exposure has a semi‐continuous structure. We also evaluate and compare the performance of our proposed method through simulation studies relative to a simpler linear regression‐based propensity score for a continuous exposure variable as well as through direct covariate adjustment. Overall, we find that using a propensity score constructed via a two‐part model significantly improves the regression estimate when the exposure variable is semi‐continuous in nature. Specifically when the proportion of non‐exposed subjects is high and the effects of covariates on exposure and outcome are strong, the proposed two‐part propensity score method outperforms the more standard competing methods. We illustrate our method using data from the Detroit Longitudinal Cohort Study in which the exposure variable reflects gestational alcohol exposure featuring zero values and a long tail.

Suggested Citation

  • Tugba Akkaya Hocagil & Richard J. Cook & Sandra W. Jacobson & Joseph L. Jacobson & Louise M. Ryan, 2021. "Propensity score analysis for a semi‐continuous exposure variable: a study of gestational alcohol exposure and childhood cognition," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1390-1413, October.
  • Handle: RePEc:bla:jorssa:v:184:y:2021:i:4:p:1390-1413
    DOI: 10.1111/rssa.12716
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12716
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12716?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kosuke Imai & David A. van Dyk, 2004. "Causal Inference With General Treatment Regimes: Generalizing the Propensity Score," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 854-866, January.
    2. Haitao Chai & Hongmei Jiang & Lu Lin & Lei Liu, 2018. "A marginalized two-part Beta regression model for microbiome compositional data," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-16, July.
    3. Duan, Naihua, et al, 1983. "A Comparison of Alternative Models for the Demand for Medical Care," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 115-126, April.
    4. Fichera, Eleonora & Emsley, Richard & Sutton, Matt, 2016. "Is treatment “intensity” associated with healthier lifestyle choices? An application of the dose response function," Economics & Human Biology, Elsevier, vol. 23(C), pages 149-163.
    5. Guido W. Imbens, 1999. "The Role of the Propensity Score in Estimating Dose-Response Functions," NBER Technical Working Papers 0237, National Bureau of Economic Research, Inc.
    6. Carolyn Madden & Bret Mackay & Susan Skillman & Marcia Ciol & Paula Diehr, 2000. "Risk adjusting capitation: Applications in employed and disabled populations," Health Care Management Science, Springer, vol. 3(2), pages 101-109, February.
    7. Michela Bia & Alessandra Mattei, 2008. "A Stata package for the estimation of the dose–response function through adjustment for the generalized propensity score," Stata Journal, StataCorp LLC, vol. 8(3), pages 354-373, September.
    8. White, Halbert, 1983. "Corrigendum [Maximum Likelihood Estimation of Misspecified Models]," Econometrica, Econometric Society, vol. 51(2), pages 513-513, March.
    9. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kecheng Li & Tugba Akkaya-Hocagil & Richard J. Cook & Louise M. Ryan & R. Colin Carter & Khue-Dung Dang & Joseph L. Jacobson & Sandra W. Jacobson, 2024. "Use of Generalized Propensity Scores for Assessing Effects of Multiple Exposures," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 347-376, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lechner, Michael & Smith, Jeffrey, 2007. "What is the value added by caseworkers?," Labour Economics, Elsevier, vol. 14(2), pages 135-151, April.
    2. Dickson N. Khainga & Paswel P. Marenya & Maria Luz Quinhentos, 2021. "How much is enough? How multi-season exposure to demonstrations affects the use of conservation farming practices in Mozambique," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 11067-11089, July.
    3. Papadopoulos, Georgios & Santos Silva, J.M.C., 2012. "Identification issues in some double-index models for non-negative data," Economics Letters, Elsevier, vol. 117(1), pages 365-367.
    4. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    5. Steven F. Lehrer & Tian Xie, 2022. "The Bigger Picture: Combining Econometrics with Analytics Improves Forecasts of Movie Success," Management Science, INFORMS, vol. 68(1), pages 189-210, January.
    6. Das, Debojyoti & Bhatia, Vaneet & Kumar, Surya Bhushan & Basu, Sankarshan, 2022. "Do precious metals hedge crude oil volatility jumps?," International Review of Financial Analysis, Elsevier, vol. 83(C).
    7. P.A.V.B. Swamy & I-Lok Chang & Jatinder S. Mehta & William H. Greene & Stephen G. Hall & George S. Tavlas, 2016. "Removing Specification Errors from the Usual Formulation of Binary Choice Models," Econometrics, MDPI, vol. 4(2), pages 1-21, June.
    8. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    9. Marcellino, Massimiliano & Sivec, Vasja, 2016. "Monetary, fiscal and oil shocks: Evidence based on mixed frequency structural FAVARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 335-348.
    10. Fernando Rios-Avila & Gustavo J. Canavire-Bacarreza, 2017. "Standard Error Correction in Two-Stage Optimization Models: A Quasi-Maximum Likelihood Estimation Approach," Documentos de Trabajo de Valor Público 15659, Universidad EAFIT.
    11. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    12. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    13. Ayouz, Mourad K. & Remaud, Herve, 2003. "The Internationalization Determinants Of The Small Agro-Food Firms: Hypotheses And Statistical Tests," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 5(2), pages 1-27.
    14. Pablo Ibarraran & Miguel Sarzosa & Yuri Suarez Dillon Soares, 2008. "The Welfare Impacts of Local Investment Projects: Evidence from the Guatemala FIS," OVE Working Papers 0208, Inter-American Development Bank, Office of Evaluation and Oversight (OVE).
    15. Broze, Laurence & Gourieroux, Christian, 1998. "Pseudo-maximum likelihood method, adjusted pseudo-maximum likelihood method and covariance estimators," Journal of Econometrics, Elsevier, vol. 85(1), pages 75-98, July.
    16. Sridhar, Shrihari & Naik, Prasad A. & Kelkar, Ajay, 2017. "Metrics unreliability and marketing overspending," International Journal of Research in Marketing, Elsevier, vol. 34(4), pages 761-779.
    17. Sirimon Treepongkaruna, 2003. "Quasi-maximum likelihood estimates of Kiwi short-term interest rate," Applied Economics Letters, Taylor & Francis Journals, vol. 10(15), pages 937-942.
    18. Yen, Steven T. & Chern, Wen S. & Lee, Hwang-Jaw, 1991. "Effects Of Income Sources On Household Food Expenditures," 1991 Annual Meeting, August 4-7, Manhattan, Kansas 271167, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    19. Moffatt, Peter G., 1997. "Exploiting a matrix identity in the computation of the efficient score test for overdispersion in the Poisson regression model," Statistics & Probability Letters, Elsevier, vol. 32(1), pages 75-79, February.
    20. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:184:y:2021:i:4:p:1390-1413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.