IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i3p2311-2320.html
   My bibliography  Save this article

On generalized latent factor modeling and inference for high‐dimensional binomial data

Author

Listed:
  • Ting Fung Ma
  • Fangfang Wang
  • Jun Zhu

Abstract

We explore a hierarchical generalized latent factor model for discrete and bounded response variables and in particular, binomial responses. Specifically, we develop a novel two‐step estimation procedure and the corresponding statistical inference that is computationally efficient and scalable for the high dimension in terms of both the number of subjects and the number of features per subject. We also establish the validity of the estimation procedure, particularly the asymptotic properties of the estimated effect size and the latent structure, as well as the estimated number of latent factors. The results are corroborated by a simulation study and for illustration, the proposed methodology is applied to analyze a dataset in a gene–environment association study.

Suggested Citation

  • Ting Fung Ma & Fangfang Wang & Jun Zhu, 2023. "On generalized latent factor modeling and inference for high‐dimensional binomial data," Biometrics, The International Biometric Society, vol. 79(3), pages 2311-2320, September.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2311-2320
    DOI: 10.1111/biom.13768
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13768
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    2. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    3. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Applications to Poisson Models," Econometrica, Econometric Society, vol. 52(3), pages 701-720, May.
    4. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    5. repec:taf:jnlasa:v:108:y:2013:i:502:p:656-665 is not listed on IDEAS
    6. Jenni Niku & Wesley Brooks & Riki Herliansyah & Francis K C Hui & Sara Taskinen & David I Warton, 2019. "Efficient estimation of generalized linear latent variable models," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-20, May.
    7. Francis K. C. Hui & Emi Tanaka & David I. Warton, 2018. "Order selection and sparsity in latent variable models via the ordered factor LASSO," Biometrics, The International Biometric Society, vol. 74(4), pages 1311-1319, December.
    8. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    9. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    10. Noah A Rosenberg & Saurabh Mahajan & Sohini Ramachandran & Chengfeng Zhao & Jonathan K Pritchard & Marcus W Feldman, 2005. "Clines, Clusters, and the Effect of Study Design on the Inference of Human Population Structure," PLOS Genetics, Public Library of Science, vol. 1(6), pages 1-12, December.
    11. Cai, Tony & Liu, Weidong, 2011. "Adaptive Thresholding for Sparse Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 672-684.
    12. Pavel Krupskii & Raphaël Huser & Marc G. Genton, 2018. "Factor Copula Models for Replicated Spatial Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 467-479, January.
    13. Irini Moustaki & Martin Knott, 2000. "Generalized latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 391-411, September.
    14. S. Kundu & D. B. Dunson, 2014. "Latent factor models for density estimation," Biometrika, Biometrika Trust, vol. 101(3), pages 641-654.
    15. Richard A. Davis & Rongning Wu, 2009. "A negative binomial model for time series of counts," Biometrika, Biometrika Trust, vol. 96(3), pages 735-749.
    16. Philippe Huber & Elvezio Ronchetti & Maria‐Pia Victoria‐Feser, 2004. "Estimation of generalized linear latent variable models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 893-908, November.
    17. Antoniadis A. & Fan J., 2001. "Regularization of Wavelet Approximations," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 939-967, September.
    18. Carvalho, Carlos M. & Chang, Jeffrey & Lucas, Joseph E. & Nevins, Joseph R. & Wang, Quanli & West, Mike, 2008. "High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1438-1456.
    19. Jenni Niku & David I. Warton & Francis K. C. Hui & Sara Taskinen, 2017. "Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 498-522, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    2. Gonçalves, Sílvia & Perron, Benoit, 2020. "Bootstrapping factor models with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 218(2), pages 476-495.
    3. Jenni Niku & Francis K. C. Hui & Sara Taskinen & David I. Warton, 2021. "Analyzing environmental‐trait interactions in ecological communities with fourth‐corner latent variable models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    4. Bodnar, Taras & Reiß, Markus, 2016. "Exact and asymptotic tests on a factor model in low and large dimensions with applications," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 125-151.
    5. Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
    6. Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
    7. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    8. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    9. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.
    10. repec:gnv:wpaper:unige:76321 is not listed on IDEAS
    11. Gonçalves, Sílvia & McCracken, Michael W. & Perron, Benoit, 2017. "Tests of equal accuracy for nested models with estimated factors," Journal of Econometrics, Elsevier, vol. 198(2), pages 231-252.
    12. Matteo Barigozzi & Alessio Moneta, 2016. "Identifying the Independent Sources of Consumption Variation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 420-449, March.
    13. Jushan Bai & Kunpeng Li & Lina Lu, 2016. "Estimation and Inference of FAVAR Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 620-641, October.
    14. Joongyeub Yeo & George Papanicolaou, 2016. "Random matrix approach to estimation of high-dimensional factor models," Papers 1611.05571, arXiv.org, revised Nov 2017.
    15. Matteo Barigozzi, 2023. "Asymptotic equivalence of Principal Components and Quasi Maximum Likelihood estimators in Large Approximate Factor Models," Papers 2307.09864, arXiv.org, revised Sep 2023.
    16. Matteo Barigozzi & Marc Hallin, 2017. "A network analysis of the volatility of high dimensional financial series," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 581-605, April.
    17. Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "Time‐Varying Risk Premium in Large Cross‐Sectional Equity Data Sets," Econometrica, Econometric Society, vol. 84, pages 985-1046, May.
    18. Sumanjay Dutta & Shashi Jain, 2023. "Precision versus Shrinkage: A Comparative Analysis of Covariance Estimation Methods for Portfolio Allocation," Papers 2305.11298, arXiv.org.
    19. Choi, Sung Hoon & Kim, Donggyu, 2023. "Large volatility matrix analysis using global and national factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1917-1933.
    20. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    21. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," DSSR Discussion Papers 96, Graduate School of Economics and Management, Tohoku University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2311-2320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.