IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v65y2009i1p81-87.html
   My bibliography  Save this article

A Semi-Parametric Shared Parameter Model to Handle Nonmonotone Nonignorable Missingness

Author

Listed:
  • Roula Tsonaka
  • Geert Verbeke
  • Emmanuel Lesaffre

Abstract

No abstract is available for this item.

Suggested Citation

  • Roula Tsonaka & Geert Verbeke & Emmanuel Lesaffre, 2009. "A Semi-Parametric Shared Parameter Model to Handle Nonmonotone Nonignorable Missingness," Biometrics, The International Biometric Society, vol. 65(1), pages 81-87, March.
  • Handle: RePEc:bla:biomet:v:65:y:2009:i:1:p:81-87
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2008.01021.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao Song & Marie Davidian & Anastasios A. Tsiatis, 2002. "A Semiparametric Likelihood Approach to Joint Modeling of Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 58(4), pages 742-753, December.
    2. Fushing Hsieh & Yi-Kuan Tseng & Jane-Ling Wang, 2006. "Joint Modeling of Survival and Longitudinal Data: Likelihood Approach Revisited," Biometrics, The International Biometric Society, vol. 62(4), pages 1037-1043, December.
    3. Caroline Beunckens & Geert Molenberghs & Geert Verbeke & Craig Mallinckrodt, 2008. "A Latent-Class Mixture Model for Incomplete Longitudinal Gaussian Data," Biometrics, The International Biometric Society, vol. 64(1), pages 96-105, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Method of the month: Shared parameter models
      by Sam Watson in The Academic Health Economists' Blog on 2018-07-26 06:00:40

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyue Zhao & Lin Zhang & Dipankar Bandyopadhyay, 0. "A Shared Spatial Model for Multivariate Extreme-Valued Binary Data with Non-Random Missingness," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 0, pages 1-23.
    2. Arnab Mukherji & Satrajit Roychowdhury & Pulak Ghosh & Sarah Brown, 2012. "Estimating Healthcare Demand for an Aging Population: A Flexible and Robust Bayesian Joint Model," Working Papers 2012027, The University of Sheffield, Department of Economics.
    3. Peter J. Diggle & Raquel Menezes & Ting‐li Su, 2010. "Geostatistical inference under preferential sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 191-232, March.
    4. Roula Tsonaka & Dimitris Rizopoulos & Geert Verbeke & Emmanuel Lesaffre, 2010. "Nonignorable Models for Intermittently Missing Categorical Longitudinal Responses," Biometrics, The International Biometric Society, vol. 66(3), pages 834-844, September.
    5. Prajamitra Bhuyan, 2019. "Estimation of random-effects model for longitudinal data with nonignorable missingness using Gibbs sampling," Computational Statistics, Springer, vol. 34(4), pages 1693-1710, December.
    6. Antonello Maruotti, 2015. "Handling non-ignorable dropouts in longitudinal data: a conditional model based on a latent Markov heterogeneity structure," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 84-109, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yih‐Huei Huang & Wen‐Han Hwang & Fei‐Yin Chen, 2016. "Improving efficiency using the Rao–Blackwell theorem in corrected and conditional score estimation methods for joint models," Biometrics, The International Biometric Society, vol. 72(4), pages 1136-1144, December.
    2. Paul S. Albert & Joanna H. Shih, 2010. "On Estimating the Relationship between Longitudinal Measurements and Time-to-Event Data Using a Simple Two-Stage Procedure," Biometrics, The International Biometric Society, vol. 66(3), pages 983-987, September.
    3. Xianzheng Huang & Leonard A. Stefanski & Marie Davidian, 2009. "Latent-Model Robustness in Joint Models for a Primary Endpoint and a Longitudinal Process," Biometrics, The International Biometric Society, vol. 65(3), pages 719-727, September.
    4. Jimin Ding & Jane-Ling Wang, 2008. "Modeling Longitudinal Data with Nonparametric Multiplicative Random Effects Jointly with Survival Data," Biometrics, The International Biometric Society, vol. 64(2), pages 546-556, June.
    5. Y. K. Tseng & Y. R. Su & M. Mao & J. L. Wang, 2015. "An extended hazard model with longitudinal covariates," Biometrika, Biometrika Trust, vol. 102(1), pages 135-150.
    6. Dimitris Rizopoulos & Geert Verbeke & Emmanuel Lesaffre, 2009. "Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 637-654, June.
    7. Peter J. Diggle & Raquel Menezes & Ting‐li Su, 2010. "Geostatistical inference under preferential sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 191-232, March.
    8. Alexander C. McLain & Kirsten J. Lum & Rajeshwari Sundaram, 2012. "A Joint Mixed Effects Dispersion Model for Menstrual Cycle Length and Time-to-Pregnancy," Biometrics, The International Biometric Society, vol. 68(2), pages 648-656, June.
    9. Michael E. Sobel & Bengt Muthén, 2012. "Compliance Mixture Modelling with a Zero-Effect Complier Class and Missing Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1037-1045, December.
    10. Jouni Kuha & Myrsini Katsikatsou & Irini Moustaki, 2018. "Latent variable modelling with non‐ignorable item non‐response: multigroup response propensity models for cross‐national analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1169-1192, October.
    11. Wei Yang & Dawei Xie & Qiang Pan & Harold I. Feldman & Wensheng Guo, 2017. "Joint Modeling of Repeated Measures and Competing Failure Events in a Study of Chronic Kidney Disease," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 504-524, December.
    12. Erning Li & Naisyin Wang & Nae-Yuh Wang, 2007. "Joint Models for a Primary Endpoint and Multiple Longitudinal Covariate Processes," Biometrics, The International Biometric Society, vol. 63(4), pages 1068-1078, December.
    13. Liang Li & Bo Hu & Tom Greene, 2009. "A Semiparametric Joint Model for Longitudinal and Survival Data with Application to Hemodialysis Study," Biometrics, The International Biometric Society, vol. 65(3), pages 737-745, September.
    14. David Todem & KyungMann Kim & Jason Fine & Limin Peng, 2010. "Semiparametric regression models and sensitivity analysis of longitudinal data with non‐random dropouts," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(2), pages 133-156, May.
    15. Brian Neelon & A. James O'Malley & Sharon-Lise T. Normand, 2011. "A Bayesian Two-Part Latent Class Model for Longitudinal Medical Expenditure Data: Assessing the Impact of Mental Health and Substance Abuse Parity," Biometrics, The International Biometric Society, vol. 67(1), pages 280-289, March.
    16. Xavier Piulachs & Ramon Alemany & Montserrat Guillen, 2014. "A joint longitudinal and survival model with health care usage for insured elderly," Working Papers 2014-07, Universitat de Barcelona, UB Riskcenter.
    17. Qi Gong & Douglas E. Schaubel, 2013. "Partly Conditional Estimation of the Effect of a Time-Dependent Factor in the Presence of Dependent Censoring," Biometrics, The International Biometric Society, vol. 69(2), pages 338-347, June.
    18. Jaeun Choi & Jianwen Cai & Donglin Zeng, 2017. "Penalized Likelihood Approach for Simultaneous Analysis of Survival Time and Binary Longitudinal Outcome," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 190-216, November.
    19. Dimitris Rizopoulos & Geert Verbeke & Emmanuel Lesaffre & Yves Vanrenterghem, 2008. "A Two-Part Joint Model for the Analysis of Survival and Longitudinal Binary Data with Excess Zeros," Biometrics, The International Biometric Society, vol. 64(2), pages 611-619, June.
    20. Robert M. Elashoff & Gang Li & Ning Li, 2008. "A Joint Model for Longitudinal Measurements and Survival Data in the Presence of Multiple Failure Types," Biometrics, The International Biometric Society, vol. 64(3), pages 762-771, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:65:y:2009:i:1:p:81-87. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.