IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v17y2025i2d10.1007_s12561-024-09429-6.html
   My bibliography  Save this article

A Bayesian Joint Model of Longitudinal Kidney Disease Progression, Recurrent Cardiovascular Events, and Terminal Event in Patients with Chronic Kidney Disease

Author

Listed:
  • Esra Kürüm

    (University of California)

  • Brian Kwan

    (California State University)

  • Qi Qian

    (University of California)

  • Sudipto Banerjee

    (University of California)

  • Connie M. Rhee

    (University of California
    VA Greater Los Angeles Health Care System)

  • Danh V. Nguyen

    (University of California)

  • Damla Şentürk

    (University of California)

Abstract

Nearly 15% (37 million) of adults in the United States (US) have chronic kidney disease (CKD). The longitudinal decline of kidney function is intricately related to the development of cardiovascular disease (CVD) and eventual “terminal” event (kidney failure and mortality) in patients with CKD. Understanding the mechanism and risk factors underlying the three key outcome processes, (1) CKD progression, (2) CVD, and (3) subsequent terminal event in the CKD patient population remains incomplete. Thus, in this work, we develop a novel trivariate joint model to study the risk factors associated with the interdependent outcomes of kidney function (as measured by longitudinal estimated glomerular filtration rate), recurrent cardiovascular events, and the terminal event. Efficient estimation and inference is proposed within a Bayesian framework using Markov Chain Monte Carlo and Bayesian P-splines for hazard functions. The proposed Bayesian framework is directly generalizable beyond trivariate outcome processes to accommodate other potential modeling of complex multi-disease processes. The method is applied to study the aforementioned trivariate processes using data from the Chronic Renal Insufficiency Cohort Study, an ongoing prospective cohort study, established by the National Institute of Diabetes and Digestive and Kidney Diseases to address the rising epidemic of CKD in the US.

Suggested Citation

  • Esra Kürüm & Brian Kwan & Qi Qian & Sudipto Banerjee & Connie M. Rhee & Danh V. Nguyen & Damla Şentürk, 2025. "A Bayesian Joint Model of Longitudinal Kidney Disease Progression, Recurrent Cardiovascular Events, and Terminal Event in Patients with Chronic Kidney Disease," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 17(2), pages 528-554, July.
  • Handle: RePEc:spr:stabio:v:17:y:2025:i:2:d:10.1007_s12561-024-09429-6
    DOI: 10.1007/s12561-024-09429-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-024-09429-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-024-09429-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li-An Lin & Sheng Luo & Barry R. Davis, 2018. "Bayesian regression model for recurrent event data with event-varying covariate effects and event effect," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(7), pages 1260-1276, May.
    2. Fushing Hsieh & Yi-Kuan Tseng & Jane-Ling Wang, 2006. "Joint Modeling of Survival and Longitudinal Data: Likelihood Approach Revisited," Biometrics, The International Biometric Society, vol. 62(4), pages 1037-1043, December.
    3. Lei Liu & Xuelin Huang, 2009. "Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 65-81, February.
    4. Dimitris Rizopoulos & Geert Verbeke & Geert Molenberghs, 2008. "Shared parameter models under random effects misspecification," Biometrika, Biometrika Trust, vol. 95(1), pages 63-74.
    5. Dimitris Rizopoulos & Geert Verbeke & Emmanuel Lesaffre, 2009. "Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 637-654, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:jss:jstsof:35:i09 is not listed on IDEAS
    2. Esra Kürüm & Danh V. Nguyen & Qi Qian & Sudipto Banerjee & Connie M. Rhee & Damla Şentürk, 2024. "Spatiotemporal multilevel joint modeling of longitudinal and survival outcomes in end-stage kidney disease," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(4), pages 827-852, October.
    3. Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    4. Tang, Nian-Sheng & Tang, An-Min & Pan, Dong-Dong, 2014. "Semiparametric Bayesian joint models of multivariate longitudinal and survival data," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 113-129.
    5. Rui Martins, 2022. "A flexible link for joint modelling longitudinal and survival data accounting for individual longitudinal heterogeneity," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(1), pages 41-61, March.
    6. Dimitris Rizopoulos & Laura A. Hatfield & Bradley P. Carlin & Johanna J. M. Takkenberg, 2014. "Combining Dynamic Predictions From Joint Models for Longitudinal and Time-to-Event Data Using Bayesian Model Averaging," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1385-1397, December.
    7. Philipson, Pete & Hickey, Graeme L. & Crowther, Michael J. & Kolamunnage-Dona, Ruwanthi, 2020. "Faster Monte Carlo estimation of joint models for time-to-event and multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    8. Liang Li & Sheng Luo & Bo Hu & Tom Greene, 2017. "Dynamic Prediction of Renal Failure Using Longitudinal Biomarkers in a Cohort Study of Chronic Kidney Disease," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 357-378, December.
    9. Rizopoulos, Dimitris, 2012. "Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 491-501.
    10. Y. K. Tseng & Y. R. Su & M. Mao & J. L. Wang, 2015. "An extended hazard model with longitudinal covariates," Biometrika, Biometrika Trust, vol. 102(1), pages 135-150.
    11. Jaeun Choi & Donglin Zeng & Andrew F. Olshan & Jianwen Cai, 2018. "Joint modeling of survival time and longitudinal outcomes with flexible random effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 126-152, January.
    12. Bikram Karmakar & Peng Liu & Gourab Mukherjee & Hai Che & Shantanu Dutta, 2022. "Improved retention analysis in freemium role‐playing games by jointly modelling players’ motivation, progression and churn," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 102-133, January.
    13. Atanu B & Gajendra V & Jesna J & Ramesh V, 2017. "Multiple Imputations for Determining an Optimum Biological Dose of a Metronomic Chemotherapy," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 3(5), pages 129-140, October.
    14. Dimitris Rizopoulos & Geert Verbeke & Geert Molenberghs, 2010. "Multiple-Imputation-Based Residuals and Diagnostic Plots for Joint Models of Longitudinal and Survival Outcomes," Biometrics, The International Biometric Society, vol. 66(1), pages 20-29, March.
    15. Na Cai & Wenbin Lu & Hao Helen Zhang, 2012. "Time-Varying Latent Effect Model for Longitudinal Data with Informative Observation Times," Biometrics, The International Biometric Society, vol. 68(4), pages 1093-1102, December.
    16. Lei Liu & Xuelin Huang & John O'Quigley, 2008. "Analysis of Longitudinal Data in the Presence of Informative Observational Times and a Dependent Terminal Event, with Application to Medical Cost Data," Biometrics, The International Biometric Society, vol. 64(3), pages 950-958, September.
    17. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
    18. Roula Tsonaka & Geert Verbeke & Emmanuel Lesaffre, 2009. "A Semi-Parametric Shared Parameter Model to Handle Nonmonotone Nonignorable Missingness," Biometrics, The International Biometric Society, vol. 65(1), pages 81-87, March.
    19. Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
    20. Karl, Andrew T. & Yang, Yan & Lohr, Sharon L., 2014. "Computation of maximum likelihood estimates for multiresponse generalized linear mixed models with non-nested, correlated random effects," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 146-162.
    21. Yih‐Huei Huang & Wen‐Han Hwang & Fei‐Yin Chen, 2016. "Improving efficiency using the Rao–Blackwell theorem in corrected and conditional score estimation methods for joint models," Biometrics, The International Biometric Society, vol. 72(4), pages 1136-1144, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:17:y:2025:i:2:d:10.1007_s12561-024-09429-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.