IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v71y2009i3p637-654.html
   My bibliography  Save this article

Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data

Author

Listed:
  • Dimitris Rizopoulos
  • Geert Verbeke
  • Emmanuel Lesaffre

Abstract

A common objective in longitudinal studies is the joint modelling of a longitudinal response with a time-to-event outcome. Random effects are typically used in the joint modelling framework to explain the interrelationships between these two processes. However, estimation in the presence of random effects involves intractable integrals requiring numerical integration. We propose a new computational approach for fitting such models that is based on the Laplace method for integrals that makes the consideration of high dimensional random-effects structures feasible. Contrary to the standard Laplace approximation, our method requires much fewer repeated measurements per individual to produce reliable results. Copyright (c) 2009 Royal Statistical Society.

Suggested Citation

  • Dimitris Rizopoulos & Geert Verbeke & Emmanuel Lesaffre, 2009. "Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 637-654.
  • Handle: RePEc:bla:jorssb:v:71:y:2009:i:3:p:637-654
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9868.2008.00704.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kauermann, Goran & Xu, Ronghui & Vaida, Florin, 2008. "Stacked Laplace-EM algorithm for duration models with time-varying and random effects," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2514-2528, January.
    2. Fushing Hsieh & Yi-Kuan Tseng & Jane-Ling Wang, 2006. "Joint Modeling of Survival and Longitudinal Data: Likelihood Approach Revisited," Biometrics, The International Biometric Society, vol. 62(4), pages 1037-1043, December.
    3. Abrahantes, Jose Cortinas & Legrand, Catherine & Burzykowski, Tomasz & Janssen, Paul & Ducrocq, Vincent & Duchateau, Luc, 2007. "Comparison of different estimation procedures for proportional hazards model with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3913-3930, May.
    4. Xiao Song & Marie Davidian & Anastasios A. Tsiatis, 2002. "A Semiparametric Likelihood Approach to Joint Modeling of Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 58(4), pages 742-753, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:bla:biomet:v:73:y:2017:i:1:p:305-312 is not listed on IDEAS
    2. Rizopoulos, Dimitris, 2012. "Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 491-501.
    3. Liang Li & Sheng Luo & Bo Hu & Tom Greene, 0. "Dynamic Prediction of Renal Failure Using Longitudinal Biomarkers in a Cohort Study of Chronic Kidney Disease," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 0, pages 1-22.
    4. Silvia Cagnone & Paola Monari, 2013. "Latent variable models for ordinal data by using the adaptive quadrature approximation," Computational Statistics, Springer, vol. 28(2), pages 597-619, April.
    5. Bernhardt, Paul W. & Zhang, Daowen & Wang, Huixia Judy, 2015. "A fast EM algorithm for fitting joint models of a binary response and multiple longitudinal covariates subject to detection limits," Computational Statistics & Data Analysis, Elsevier, vol. 85(C), pages 37-53.
    6. Bianconcini, Silvia & Cagnone, Silvia, 2012. "Estimation of generalized linear latent variable models via fully exponential Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 183-193.
    7. Hui Song & Yingwei Peng & Dongsheng Tu, 2017. "Jointly modeling longitudinal proportional data and survival times with an application to the quality of life data in a breast cancer trial," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 183-206, April.
    8. repec:spr:stabio:v:9:y:2017:i:2:d:10.1007_s12561-016-9183-7 is not listed on IDEAS
    9. Tang, Nian-Sheng & Tang, An-Min & Pan, Dong-Dong, 2014. "Semiparametric Bayesian joint models of multivariate longitudinal and survival data," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 113-129.
    10. Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
    11. Rong Fu & Peter B. Gilbert, 2017. "Joint modeling of longitudinal and survival data with the Cox model and two-phase sampling," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 136-159, January.
    12. Dimitris Rizopoulos & Geert Verbeke & Geert Molenberghs, 2010. "Multiple-Imputation-Based Residuals and Diagnostic Plots for Joint Models of Longitudinal and Survival Outcomes," Biometrics, The International Biometric Society, vol. 66(1), pages 20-29, March.
    13. Karl, Andrew T. & Yang, Yan & Lohr, Sharon L., 2014. "Computation of maximum likelihood estimates for multiresponse generalized linear mixed models with non-nested, correlated random effects," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 146-162.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:71:y:2009:i:3:p:637-654. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.