IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v34y2019i4d10.1007_s00180-019-00887-x.html
   My bibliography  Save this article

Estimation of random-effects model for longitudinal data with nonignorable missingness using Gibbs sampling

Author

Listed:
  • Prajamitra Bhuyan

    () (Imperial College London)

Abstract

Abstract The missing data problem is common in longitudinal or repeated measurements data. When the missingness mechanism is nonignorable, the distribution of the observed response and indicators of missingness should be modelled jointly using either ‘shared random-effects model’ or ‘correlated random-effects model’. However, computational challenges arise in the model fitting due to intractable numerical integration involved in the log-likelihood function. We provide alternative modeling of ‘correlated random-effects model’ using latent variables and propose a simple algorithm based on Gibbs sampling for estimation of associated parameters. The method is illustrated through simulation and the analysis of a real data set arising from an autism study.

Suggested Citation

  • Prajamitra Bhuyan, 2019. "Estimation of random-effects model for longitudinal data with nonignorable missingness using Gibbs sampling," Computational Statistics, Springer, vol. 34(4), pages 1693-1710, December.
  • Handle: RePEc:spr:compst:v:34:y:2019:i:4:d:10.1007_s00180-019-00887-x
    DOI: 10.1007/s00180-019-00887-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-019-00887-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roula Tsonaka & Geert Verbeke & Emmanuel Lesaffre, 2009. "A Semi-Parametric Shared Parameter Model to Handle Nonmonotone Nonignorable Missingness," Biometrics, The International Biometric Society, vol. 65(1), pages 81-87, March.
    2. P. Diggle & M. G. Kenward, 1994. "Informative Drop‐Out in Longitudinal Data Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 49-73, March.
    3. Michael J. Daniels & Joseph W. Hogan, 2000. "Reparameterizing the Pattern Mixture Model for Sensitivity Analyses Under Informative Dropout," Biometrics, The International Biometric Society, vol. 56(4), pages 1241-1248, December.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:34:y:2019:i:4:d:10.1007_s00180-019-00887-x. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.