IDEAS home Printed from https://ideas.repec.org/a/bla/agecon/v45y2014i1p1-2.html
   My bibliography  Save this article

Modeling climate change and agriculture: an introduction to the special issue

Author

Listed:
  • Gerald C. Nelson
  • Gerald E. Shively

Abstract

This issue of Agricultural Economics is a special issue containing articles on model performance in assessing the effects of climate change, bioenergy policy, and socioeconomics on agriculture. The contributions present results from a global economic model intercomparison activity undertaken as part of the AgMIP Project (www.agmip.org). The origins of the comparison activities can be traced to a project that was organized by the OECD in late 2010 to compare results from three models. The current phase of the research includes 10 models and was designed in part to support of the IPCC fifth assessment report (AR5). The special issue includes seven peer-reviewed articles that present thematic results from a range of modeling strategies, with partial and general equilibrium modeling as a high level distinction but a myriad of differences within these two model types. A central common element is harmonization on biophysical effects using crop models and socioeconomic effects using drivers from the Shared Socioeconomic Pathways developed as part of the AR5 process. The special issue provides broad insights into how the modeling communities approached the interactions of climate, socioeconomics, bioenergy policy on agricultural outcomes, including land use, prices, consumption, and production.

Suggested Citation

  • Gerald C. Nelson & Gerald E. Shively, 2014. "Modeling climate change and agriculture: an introduction to the special issue," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 1-2, January.
  • Handle: RePEc:bla:agecon:v:45:y:2014:i:1:p:1-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/agec.12093
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeločnik, Marko & Zubović, Jovan & Zdravković, Aleksandar, 2019. "Estimating impact of weather factors on wheat yields by using panel model approach — The case of Serbia," Agricultural Water Management, Elsevier, vol. 221(C), pages 493-501.
    2. Simon Dietz & Bruno Lanz, 2019. "Growth and Adaptation to Climate Change in the Long Run," CESifo Working Paper Series 7986, CESifo.
    3. Scheierling, S. M., 2014. "How to assess agricultural water productivity?: looking for water in the agricultural productivity and efficiency literature," IWMI Working Papers H046876, International Water Management Institute.
    4. Manojit Chattopadhyay & Subrata Kumar Mitra, 2018. "Assessing the predictability of different kinds of models in estimating impacts of climatic factors on food grain availability in India," OPSEARCH, Springer;Operational Research Society of India, vol. 55(1), pages 50-64, March.
    5. Bruno Lanz & Simon Dietz & Tim Swanson, 2016. "Economic growth and agricultural land conversion under uncertain productivity improvements in agriculture," FOODSECURE Working papers 53, LEI Wageningen UR.
    6. Benjamin Schiek, 2021. "“Reverse engineering” research portfolio synergies and tradeoffs from domain expertise in minimum data contexts," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-21, November.
    7. Bruno Lanz & Simon Dietz & Tim Swanson, 2018. "Global Economic Growth and Agricultural Land Conversion under Uncertain Productivity Improvements in Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(2), pages 545-569.
    8. RESTU ANANDA, RIMA & Widodo, Tri, 2019. "A General Assessment of Climate Change - Loss of Agricultural Productivity in Indonesia," MPRA Paper 91316, University Library of Munich, Germany.
    9. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    10. Sudarshan Chalise & Dr Athula Naranpanawa, 2016. "Climate change adaptation in agriculture: A general equilibrium analysis of land re-allocation in Nepal," EcoMod2016 9272, EcoMod.
    11. Kuhn, Arnim & Endeshaw, Kassahun, 2015. "Trends and Drivers of Crop Biomass Demand: Sub-Saharan Africa vs the Rest of the World," Discussion Papers 212930, University of Bonn, Institute for Food and Resource Economics.
    12. Jayatilleke S. Bandara & Yiyong Cai, 2014. "The impact of climate change on food crop productivity, food prices and food security in South Asia," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 451-465.
    13. Mandryk, Maryia & Reidsma, Pytrik & van Ittersum, Martin K., 2017. "Crop and farm level adaptation under future climate challenges: An exploratory study considering multiple objectives for Flevoland, the Netherlands," Agricultural Systems, Elsevier, vol. 152(C), pages 154-164.
    14. Sudarshan Chalise & Athula Naranpanawa, 2023. "Potential impacts of climate change and adaptation in agriculture on poverty: the case of Nepal," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 28(4), pages 1540-1559, October.
    15. Gkiza, Ioanna & Nastis, Stefanos, 2018. "High Spatial Analysis on the Effects of Climate Change on Cereal Yield in Greece," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 0(Issue 1).
    16. Chalise, Sudarshan & Naranpanawa, Athula & Bandara, Jayatilleke S. & Sarker, Tapan, 2017. "A general equilibrium assessment of climate change–induced loss of agricultural productivity in Nepal," Economic Modelling, Elsevier, vol. 62(C), pages 43-50.
    17. Uris L. C. Baldos & Thomas W. Hertel & Frances C. Moore, 2019. "Understanding the Spatial Distribution of Welfare Impacts of Global Warming on Agriculture and its Drivers," American Journal of Agricultural Economics, John Wiley & Sons, vol. 101(5), pages 1455-1472, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:agecon:v:45:y:2014:i:1:p:1-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.