IDEAS home Printed from https://ideas.repec.org/a/bdr/ensayo/v28y2010i62p70-123.html
   My bibliography  Save this article

Evaluación del desempeño del sector de distribución de electricidad en Colombia: Una aplicación del análisis de frontera estocástica

Author

Listed:
  • Yeinni Andrea patiño

    ()

  • Gustavo Adolfo Gómez

    ()

  • Emma Osorio Medina

    ()

Abstract

Este trabajo tiene como objetivo evaluar el desempeño en la eficiencia técnica de las empresas que distribuyen energía en Colombia durante el período 2004-2007, usando el análisis de frontera estocástica (SFA). Se emplea una función de distancia translog orientada a los insumos, lo que permite considerar a los productos como dados y a los insumos como variables de control. Los resultados empíricos arrojan que en el sector de distribución de energía no se generaron ni cambios tecnológicos ni mejoramientos en la eficiencia técnica durante el período de estudio. Además, se comprobó que las variables ambientales son determinantes de la tecnología de producción y en consecuencia se considera que el entorno en el que operan las empresas influye en su desempeño administrativo. Los resultados indican que cuatro de las empresas analizadas alcanzan una eficiencia técnica superior al 90 %. En general, el sector tiene una eficiencia técnica promedio de 60,12% y un componente de ineficiencia que representa el 94,50% del término de error compuesto; estas cifras indican que los errores aleatorios se deben, en gran medida, a la ineficiencia de las empresas.

Suggested Citation

  • Yeinni Andrea patiño & Gustavo Adolfo Gómez & Emma Osorio Medina, 2010. "Evaluación del desempeño del sector de distribución de electricidad en Colombia: Una aplicación del análisis de frontera estocástica," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 28(62), pages 70-123, June.
  • Handle: RePEc:bdr:ensayo:v:28:y:2010:i:62:p:70-123
    DOI: 10.32468/Espe.6202
    as

    Download full text from publisher

    File URL: https://doi.org/10.32468/Espe.6202
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    2. Ligia Melo & Néstor Espinosa, 2005. "Ineficiencia en la distribución de energía eléctrica: una aplicación de las funciones de distancia estocástica," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República - ESPE, vol. 23(49), pages 88-132, December.
    3. Tim Coelli & Antonio Estache & Sergio Perelman & Lourdes Trujillo, 2003. "A Primer on Efficiency Measurement for Utilities and Transport Regulators," World Bank Publications, The World Bank, number 15149, June.
    4. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    5. Rodríguez Pardina, Martín & Rossi, Martín & Ruzzier, Christian, 1999. "Fronteras de eficiencia en el sector de distribución de energía eléctrica: la experiencia sudamericana," UADE Textos de Discusión 15_1999, Instituto de Economía, Universidad Argentina de la Empresa.
    6. Tim Coelli & Sergio Perelman, 2000. "Technical efficiency of European railways: a distance function approach," Applied Economics, Taylor & Francis Journals, vol. 32(15), pages 1967-1976.
    7. Toru Hattori, 2002. "Relative Performance of U.S. and Japanese Electricity Distribution: An Application of Stochastic Frontier Analysis," Journal of Productivity Analysis, Springer, vol. 18(3), pages 269-284, November.
    8. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
    9. Burns, Philip & Weyman-Jones, Thomas G, 1996. "Cost Functions and Cost Efficiency in Electricity Distribution: A Stochastic Frontier Approach," Bulletin of Economic Research, Wiley Blackwell, vol. 48(1), pages 41-64, January.
    10. Coelli, Tim & Perelman, Sergio, 1999. "A comparison of parametric and non-parametric distance functions: With application to European railways," European Journal of Operational Research, Elsevier, vol. 117(2), pages 326-339, September.
    11. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    12. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darío Ezequiel Díaz, 2013. "La Distribución Eléctrica en Argentina y su Eficiencia Técnica:Una Aplicación del Análisis de Fronteras Estocásticas (SFA) Utilizando Funciones Distancia," Revista de Economía y Estadística, Universidad Nacional de Córdoba, Facultad de Ciencias Económicas, Instituto de Economía y Finanzas, vol. 0(1), pages 85-118, January.
    2. C. P. Barros & O. H. dos S. Figueiredo & Silvestre Dumbo, 2016. "A performance assessment of the Angolan soccer league," Applied Economics, Taylor & Francis Journals, vol. 48(29), pages 2711-2720, June.
    3. José Manuel Cordero Ferrera & Eva Crespo Cebada & Francisco Pedraja Chaparro & Daniel Santín González, 2011. "Exploring Educational Efficiency Divergences Across Spanish Regions In Pisa 2006," Revista de Economia Aplicada, Universidad de Zaragoza, Departamento de Estructura Economica y Economia Publica, vol. 19(3), pages 117-145, Winter.
    4. Ripoll-Zarraga, Ane Elixabete & Huderek-Glapska, Sonia, 2021. "Airports’ managerial human capital, ownership, and efficiency," Journal of Air Transport Management, Elsevier, vol. 92(C).
    5. Martini, Gianmaria & Scotti, Davide & Viola, Domenico & Vittadini, Giorgio, 2020. "Persistent and temporary inefficiency in airport cost function: An application to Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 999-1019.
    6. Gerardo Antonio Buchelli Lozano & Jhon Jairo Marín Restrepo, 2012. "Estimación de la eficiencia del sector metalmecánico en colombia: análisis de frontera estocástica," Revista Cuadernos de Economía, Universidad Nacional de Colombia -FCE - CID, December.
    7. Mota, R.L., 2004. "‘Comparing Brazil and USA electricity performance; what was the impact of privatisation?’," Cambridge Working Papers in Economics 0423, Faculty of Economics, University of Cambridge.
    8. Coelli, Tim J., 1995. "Recent Developments In Frontier Modelling And Efficiency Measurement," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 39(3), pages 1-27, December.
    9. Ceyhun Elgin & Selman Çakır, 2015. "Technological progress and scientific indicators: a panel data analysis," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 24(3), pages 263-281, April.
    10. Goyal, S.K. & Suhag, K.S. & Pandey, U.K., 2006. "An Estimation of Technical Efficiency of Paddy Farmers in Haryana State of India," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 61(1), pages 1-15.
    11. Forsund, Finn R. & Sarafoglou, Nikias, 2005. "The tale of two research communities: The diffusion of research on productive efficiency," International Journal of Production Economics, Elsevier, vol. 98(1), pages 17-40, October.
    12. Scotti, Davide & Malighetti, Paolo & Martini, Gianmaria & Volta, Nicola, 2012. "The impact of airport competition on technical efficiency: A stochastic frontier analysis applied to Italian airport," Journal of Air Transport Management, Elsevier, vol. 22(C), pages 9-15.
    13. Liu, Xiao-Yan & Pollitt, Michael G. & Xie, Bai-Chen & Liu, Li-Qiu, 2019. "Does environmental heterogeneity affect the productive efficiency of grid utilities in China?," Energy Economics, Elsevier, vol. 83(C), pages 333-344.
    14. Farsi, Mehdi & Filippini, Massimo, 2009. "An analysis of cost efficiency in Swiss multi-utilities," Energy Economics, Elsevier, vol. 31(2), pages 306-315, March.
    15. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    16. Cullmann, Astrid & Farsi, Mehdi & Filippini Massimo, 2009. "Unobserved Heterogeneity and International Benchmarking in Public Trasport," Quaderni della facoltà di Scienze economiche dell'Università di Lugano 0904, USI Università della Svizzera italiana.
    17. Vaninsky, Alexander, 2010. "Prospective national and regional environmental performance: Boundary estimations using a combined data envelopment – stochastic frontier analysis approach," Energy, Elsevier, vol. 35(9), pages 3657-3665.
    18. Federico Belotti & Giuseppe Ilardi & Andrea Piano Mortari, 2019. "Estimation of Stochastic Frontier Panel Data Models with Spatial Inefficiency," CEIS Research Paper 459, Tor Vergata University, CEIS, revised 30 May 2019.
    19. Pérez-Reyes, Raúl & Tovar, Beatriz, 2010. "Explaining the inefficiency of electrical distribution companies: Peruvian firms," Energy Economics, Elsevier, vol. 32(5), pages 1175-1181, September.
    20. Mastromarco Camilla & Laura Serlenga & Yongcheol Shin, 2013. "Globalisation and technological convergence in the EU," Journal of Productivity Analysis, Springer, vol. 40(1), pages 15-29, August.

    More about this item

    Keywords

    Eficiencia; Frontera Estocastica; distribución de energía;
    All these keywords.

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdr:ensayo:v:28:y:2010:i:62:p:70-123. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Clorith Angélica Bahos Olivera). General contact details of provider: https://edirc.repec.org/data/brcgvco.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.