IDEAS home Printed from https://ideas.repec.org/a/arp/srarsr/2016p74-78.html
   My bibliography  Save this article

Yield of Ethanol Produced from Waste Pod of Fluted Pumpkin (Telfairia Occidentalis) Using African Giant Snail (Archachatina Marginata) Slime and Yeast

Author

Listed:
  • Akwukwaegbu, P. I.

    (Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria)

  • Peters, D. E.

    (Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria)

  • Wegwu, M. O.

    (Department of Biochemistry, Faculty of Science, University of Port Harcourt, Choba, Rivers State, Nigeria)

Abstract

Yield of ethanol produced using biowaste from waste pod of fluted pumpkin (Telfairia occidentalis) was investigated. Breakdown of cellulose to glucose in the waste was achieved using cellulase from snail slime. Into holding tanks containing varying concentrations of wastes were added snail slime and yeast respectively. The control holding tank (group A) had neither yeast nor snail slime. All groups were fermented under anaerobic condition at (37oC) for 24hrs, 48hrs and 72hrs. Results of the cellulose content showed (20.56±0.58%). There was no ethanol (Et) produced in the control group (group A). Results of the yield of Et of the waste in the holding tanks containing snail slime alone and yeast alone were (1.45±0.10%) and (5.44±0.44%) respectively. The yield of Et produced decreased significantly (p

Suggested Citation

  • Akwukwaegbu, P. I. & Peters, D. E. & Wegwu, M. O., 2016. "Yield of Ethanol Produced from Waste Pod of Fluted Pumpkin (Telfairia Occidentalis) Using African Giant Snail (Archachatina Marginata) Slime and Yeast," Scientific Review, Academic Research Publishing Group, vol. 2(6), pages 74-78, 06-2016.
  • Handle: RePEc:arp:srarsr:2016:p:74-78
    DOI: arpgweb.com/?ic=journal&journal=10&info=aims
    as

    Download full text from publisher

    File URL: http://www.arpgweb.com/pdf-files/sr2(6)74-78.pdf
    Download Restriction: no

    File URL: http://www.arpgweb.com/?ic=journal&journal=10&month=06-2016&issue=6&volume=2
    Download Restriction: no

    File URL: https://libkey.io/arpgweb.com/?ic=journal&journal=10&info=aims?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zeng, Xianyang & Ma, Yitai & Ma, Lirong, 2007. "Utilization of straw in biomass energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 976-987, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.
    2. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H. & Sajjakulnukit, Boonrod, 2011. "Economic feasibility assessment of rice straw utilization for electricity generating through combustion in Thailand," Applied Energy, Elsevier, vol. 88(11), pages 3651-3658.
    3. Hu, Zhongfa & Wang, Xuebin & Zhang, Lan & Yang, Shunzhi & Ruan, Renhui & Bai, Shengjie & Zhu, Yiming & Wang, Liang & Mikulčić, Hrvoje & Tan, Houzhang, 2020. "Emission characteristics of particulate matters from a 30 MW biomass-fired power plant in China," Renewable Energy, Elsevier, vol. 155(C), pages 225-236.
    4. Chen, Xiaoguang, 2016. "Economic potential of biomass supply from crop residues in China," Applied Energy, Elsevier, vol. 166(C), pages 141-149.
    5. Huang, Jintao & Lyu, Sha & Han, He & Wang, Yanjiang & Sun, Haoyang & Su, Jingtao & Liu, Yidong & Min, Yonggang & Sun, Dazhi, 2022. "Enhanced looping biomass/vapour gasification utilizing waste heat from molten copper slags," Energy, Elsevier, vol. 252(C).
    6. Li, Kun & Liu, Ronghou & Sun, Chen, 2016. "A review of methane production from agricultural residues in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 857-865.
    7. Yu, Liu & Yaoqiu, Kuang & Ningsheng, Huang & Zhifeng, Wu & Lianzhong, Xu, 2008. "Popularizing household-scale biogas digesters for rural sustainable energy development and greenhouse gas mitigation," Renewable Energy, Elsevier, vol. 33(9), pages 2027-2035.
    8. Xiao Chen & Tao Tao & Jiaxin Zhou & Helong Yu & Hongliang Guo & Hongbing Chen, 2023. "Simulation and Prediction of Greenhouse Gas Emissions from Beef Cattle," Sustainability, MDPI, vol. 15(15), pages 1-14, August.
    9. Li, Changjiang & Liao, Yuncheng & Wen, Xiaoxia & Wang, Yangfeng & Yang, Fei, 2015. "The development and countermeasures of household biogas in northwest grain for green project areas of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 835-846.
    10. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Yin, Dongxue & Liu, Wei & Zhai, Ningning & Wang, Yandong & Ren, Chengjie & Yang, Gaihe, 2017. "Regional differentiation of rural household biogas development and related driving factors in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1008-1018.
    12. Ma, Hengyun & Oxley, Les & Gibson, John & Li, Wen, 2010. "A survey of China's renewable energy economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 438-445, January.
    13. Liu, Jin & Wu, Jianguo & Liu, Fengqiao & Han, Xingguo, 2012. "Quantitative assessment of bioenergy from crop stalk resources in Inner Mongolia, China," Applied Energy, Elsevier, vol. 93(C), pages 305-318.
    14. Zhang, Shuangqi & Deng, Mengsi & Shan, Ming & Zhou, Chuang & Liu, Wei & Xu, Xiaoqiu & Yang, Xudong, 2019. "Energy and environmental impact assessment of straw return and substitution of straw briquettes for heating coal in rural China," Energy Policy, Elsevier, vol. 128(C), pages 654-664.
    15. Zhang, Kai & Chang, Jian & Guan, Yanjun & Chen, Honggang & Yang, Yongping & Jiang, Jianchun, 2013. "Lignocellulosic biomass gasification technology in China," Renewable Energy, Elsevier, vol. 49(C), pages 175-184.
    16. Cui, Xiaohui & Guo, Liyue & Li, Caihong & Liu, Meizhen & Wu, Guanglei & Jiang, Gaoming, 2021. "The total biomass nitrogen reservoir and its potential of replacing chemical fertilizers in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Zheng, Y.H. & Li, Z.F. & Feng, S.F. & Lucas, M. & Wu, G.L. & Li, Y. & Li, C.H. & Jiang, G.M., 2010. "Biomass energy utilization in rural areas may contribute to alleviating energy crisis and global warming: A case study in a typical agro-village of Shandong, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3132-3139, December.
    18. Yanran Fu & Tao Luo & Zili Mei & Jiang Li & Kun Qiu & Yihong Ge, 2018. "Dry Anaerobic Digestion Technologies for Agricultural Straw and Acceptability in China," Sustainability, MDPI, vol. 10(12), pages 1-13, December.
    19. Chen, S.Q. & Li, N.P. & Guan, J. & Ni, J. & Zhou, H. & Sun, F.M. & Xie, Y.Q., 2009. "Contrastive study between the biomass energy utilization structure and the ecotype energy utilization structure in rural residences — A case in Hunan province, China," Renewable Energy, Elsevier, vol. 34(7), pages 1782-1788.
    20. Yin, Huajun & Zhao, Wenqiang & Li, Ting & Cheng, Xinying & Liu, Qing, 2018. "Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2695-2702.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arp:srarsr:2016:p:74-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Managing Editor (email available below). General contact details of provider: http://arpgweb.com/index.php?ic=journal&journal=10&info=aims .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.