IDEAS home Printed from https://ideas.repec.org/a/ahs/journl/v10y2025i1p160-183.html
   My bibliography  Save this article

The Comparison of Artificial Neural Networks and Panel Data Analysis on Profitability Prediction: The Case of Real Estate Investment Trusts

Author

Listed:
  • Ayşegül PEKER
  • Duygu TUNALI

Abstract

In recent years, machine learning techniques have come to the forefront for profitability forecasting due to their flexibility in computation, ability to work with large and diverse data types, and capability to predict real-time changes. In addition, predicting profitability in practice is challenging and requires expertise. The primary aim of this study is to determine the most suitable profitability prediction model using Artificial Neural Network (ANN) algorithms, one of the machine learning techniques. Furthermore, the ANN prediction model was applied to the data set for the 2010-2019 quarters created from the financial statements of Real Estate Investment Trusts (REITs) companies traded in Borsa Istanbul (BIST) and the prediction success of the ANN technique was interpreted by comparing the findings obtained with the findings obtained as a result of panel data analysis. The comparison of these values with the findings of the panel data analysis has led to the conclusion that ANN prediction models can make more successful forecasts than panel data analysis models.

Suggested Citation

  • Ayşegül PEKER & Duygu TUNALI, 2025. "The Comparison of Artificial Neural Networks and Panel Data Analysis on Profitability Prediction: The Case of Real Estate Investment Trusts," Journal of Research in Economics, Politics & Finance, Ersan ERSOY, vol. 10(1), pages 160-183.
  • Handle: RePEc:ahs:journl:v:10:y:2025:i:1:p:160-183
    DOI: https://doi.org/10.30784/epfad.1602204
    as

    Download full text from publisher

    File URL: https://dergipark.org.tr/tr/download/article-file/4443512
    Download Restriction: no

    File URL: https://libkey.io/https://doi.org/10.30784/epfad.1602204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fernandez-Rodriguez, Fernando & Gonzalez-Martel, Christian & Sosvilla-Rivero, Simon, 2000. "On the profitability of technical trading rules based on artificial neural networks:: Evidence from the Madrid stock market," Economics Letters, Elsevier, vol. 69(1), pages 89-94, October.
    2. Bilgehan Tekin, 2021. "The Factors Affecting the Market Value/Book Value and Profitability of REITs in Turkey," International Real Estate Review, Global Social Science Institute, vol. 24(3), pages 469-499.
    3. Olson, Dennis & Mossman, Charles, 2003. "Neural network forecasts of Canadian stock returns using accounting ratios," International Journal of Forecasting, Elsevier, vol. 19(3), pages 453-465.
    4. Darko B. Vukovic & Lubov Spitsina & Ekaterina Gribanova & Vladislav Spitsin & Ivan Lyzin, 2023. "Predicting the Performance of Retail Market Firms: Regression and Machine Learning Methods," Mathematics, MDPI, vol. 11(8), pages 1-23, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chopra, Ritika & Sharma, Gagan Deep & Pereira, Vijay, 2024. "Identifying Bulls and bears? A bibliometric review of applying artificial intelligence innovations for stock market prediction," Technovation, Elsevier, vol. 135(C).
    2. Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
    3. Lukas Ryll & Sebastian Seidens, 2019. "Evaluating the Performance of Machine Learning Algorithms in Financial Market Forecasting: A Comprehensive Survey," Papers 1906.07786, arXiv.org, revised Jul 2019.
    4. Stephan Schulmeister, 2000. "Technical Analysis and Exchange Rate Dynamics," WIFO Studies, WIFO, number 25857, March.
    5. Ka Po Kung, 2022. "Efficiency of the Stock Markets after the 2008 Financial Crisis: Evidence from the Four Asian Dragons," Eurasian Journal of Business and Management, Eurasian Publications, vol. 10(2), pages 101-115.
    6. Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    7. Emil Kraft & Dogan Keles & Wolf Fichtner, 2020. "Modeling of frequency containment reserve prices with econometrics and artificial intelligence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1179-1197, December.
    8. Kwang-il Choe & Joshua Krausz & Kiseok Nam, 2011. "Technical trading rules for nonlinear dynamics of stock returns: evidence from the G-7 stock markets," Review of Quantitative Finance and Accounting, Springer, vol. 36(3), pages 323-353, April.
    9. Jacinta Chan Phooi M'ng & Azmin Azliza Aziz, 2016. "Using Neural Networks to Enhance Technical Trading Rule Returns: A Case with KLCI," Athens Journal of Business & Economics, Athens Institute for Education and Research (ATINER), vol. 2(1), pages 63-70, January.
    10. Rounaghi, Mohammad Mahdi & Abbaszadeh, Mohammad Reza & Arashi, Mohammad, 2015. "Stock price forecasting for companies listed on Tehran stock exchange using multivariate adaptive regression splines model and semi-parametric splines technique," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 625-633.
    11. Andreas Krause, 2009. "Evaluating the performance of adapting trading strategies with different memory lengths," Papers 0901.0447, arXiv.org.
    12. Shiyi Chen & Wolfgang K. Härdle & Kiho Jeong, 2010. "Forecasting volatility with support vector machine-based GARCH model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(4), pages 406-433.
    13. Cen, Zhongpei & Wang, Jun, 2019. "Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer," Energy, Elsevier, vol. 169(C), pages 160-171.
    14. Bekiros, Stelios D., 2010. "Heterogeneous trading strategies with adaptive fuzzy Actor-Critic reinforcement learning: A behavioral approach," Journal of Economic Dynamics and Control, Elsevier, vol. 34(6), pages 1153-1170, June.
    15. Tania Morris & Jules Comeau, 2020. "Portfolio creation using artificial neural networks and classification probabilities: a Canadian study," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(2), pages 133-163, June.
    16. Shigeo Kamitsuji & Ritei Shibata, 2003. "Effectiveness of Stochastic Neural Network for Prediction of Fall or Rise of TOPIX," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 10(2), pages 187-204, September.
    17. Shambora, William E. & Rossiter, Rosemary, 2007. "Are there exploitable inefficiencies in the futures market for oil?," Energy Economics, Elsevier, vol. 29(1), pages 18-27, January.
    18. Duygu Ider & Stefan Lessmann, 2022. "Forecasting Cryptocurrency Returns from Sentiment Signals: An Analysis of BERT Classifiers and Weak Supervision," Papers 2204.05781, arXiv.org, revised Mar 2023.
    19. Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
    20. Michael D. McKenzie, 2007. "Technical Trading Rules in Emerging Markets and the 1997 Asian Currency Crises," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 43(4), pages 46-73, August.

    More about this item

    Keywords

    Profitability Prediction; Artificial Neural Network; Panel Data;
    All these keywords.

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ahs:journl:v:10:y:2025:i:1:p:160-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ersan Ersoy (email available below). General contact details of provider: https://epfjournal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.