IDEAS home Printed from https://ideas.repec.org/a/ags/inijae/204761.html
   My bibliography  Save this article

Impact of Climate Change and Cropping Pattern on Ground Water Resources of Punjab

Author

Listed:
  • Kaur, Baljinder

Abstract

No abstract is available for this item.

Suggested Citation

  • Kaur, Baljinder, 2011. "Impact of Climate Change and Cropping Pattern on Ground Water Resources of Punjab," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 66(3), pages 1-15.
  • Handle: RePEc:ags:inijae:204761
    DOI: 10.22004/ag.econ.204761
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/204761/files/12-Baljinder%20Kaur.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.204761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tabbal, D. F. & Bouman, B. A. M. & Bhuiyan, S. I. & Sibayan, E. B. & Sattar, M. A., 2002. "On-farm strategies for reducing water input in irrigated rice; case studies in the Philippines," Agricultural Water Management, Elsevier, vol. 56(2), pages 93-112, July.
    2. Cabangon, R. J. & Tuong, T. P. & Abdullah, N. B., 2002. "Comparing water input and water productivity of transplanted and direct-seeded rice production systems," Agricultural Water Management, Elsevier, vol. 57(1), pages 11-31, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yogita Sharma & Baljinder Kaur Sidana & Sunny Kumar & Samanpreet Kaur & Milkho Kaur Sekhon & Amrit Kaur Mahal & Sushant Mehan, 2023. "Pre and Post Water Level Behaviour in Punjab: Impact Analysis with DiD Approach," Sustainability, MDPI, vol. 15(3), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouman, Bas A. M. & Barker, Randolph & Humphreys, E. & Tuong, T. P. & Atlin, G. & Bennett, John & Dawe, D. & Dittert, K. & Dobermann, A. & Facon, Thierry & Fujimoto, N. & Gupta, R. & Haefele, S. & Hos, 2007. "Rice: feeding the billions," Book Chapters,, International Water Management Institute.
      • Bouman, B. & Barker, R. & Humphreys, E. & Tuong, T. P. & Atlin, G. & Bennett, J. & Dawe, D. & Dittert, K. & Dobermann, A. & Facon, T. & Fujimoto, N. & Gupta, R. & Haefele, S. & Hosen, Y. & Ismail, A. , 2007. "Rice: feeding the billions," IWMI Books, Reports H040206, International Water Management Institute.
    2. Bouman, B. A.M., 2007. "A conceptual framework for the improvement of crop water productivity at different spatial scales," Agricultural Systems, Elsevier, vol. 93(1-3), pages 43-60, March.
    3. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    4. Anjali Chaudhary & V. Venkatramanan & Ajay Kumar Mishra & Sheetal Sharma, 2023. "Agronomic and Environmental Determinants of Direct Seeded Rice in South Asia," Circular Economy and Sustainability,, Springer.
    5. Sandhu, S.S. & Mahal, S.S. & Vashist, K.K. & G.S.Buttar, & Brar, A.S. & Singh, Maninder, 2012. "Crop and water productivity of bed transplanted rice as influenced by various levels of nitrogen and irrigation in northwest India," Agricultural Water Management, Elsevier, vol. 104(C), pages 32-39.
    6. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    7. Chao Zhang & Ruifa Hu, 2022. "Adoption of Direct Seeding, Yield and Fertilizer Use in Rice Production: Empirical Evidence from China," Agriculture, MDPI, vol. 12(9), pages 1-15, September.
    8. Lee, Teang Shui & Haque, M. Aminul & Najim, M.M.M., 2005. "Scheduling the cropping calendar in wet-seeded rice schemes in Malaysia," Agricultural Water Management, Elsevier, vol. 71(1), pages 71-84, January.
    9. Garg, Kaushal K. & Das, Bhabani S. & Safeeq, Mohammad & Bhadoria, Pratap B.S., 2009. "Measurement and modeling of soil water regime in a lowland paddy field showing preferential transport," Agricultural Water Management, Elsevier, vol. 96(12), pages 1705-1714, December.
    10. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    11. Razavipour, Teimour & Moghaddam, Sina Siavash & Doaei, Sahar & Noorhosseini, Seyyed Ali & Damalas, Christos A., 2018. "Azolla (Azolla filiculoides) compost improves grain yield of rice (Oryza sativa L.) under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 209(C), pages 1-10.
    12. Senthilkumar, K. & Bindraban, P.S. & Thiyagarajan, T.M. & de Ridder, N. & Giller, K.E., 2008. "Modified rice cultivation in Tamil Nadu, India: Yield gains and farmers' (lack of) acceptance," Agricultural Systems, Elsevier, vol. 98(2), pages 82-94, September.
    13. Bueno, C.S. & Bucourt, M. & Kobayashi, N. & Inubushi, K. & Lafarge, T., 2010. "Water productivity of contrasting rice genotypes grown under water-saving conditions in the tropics and investigation of morphological traits for adaptation," Agricultural Water Management, Elsevier, vol. 98(2), pages 241-250, December.
    14. Liang, Kaiming & Zhong, Xuhua & Huang, Nongrong & Lampayan, Rubenito M. & Pan, Junfeng & Tian, Ka & Liu, Yanzhuo, 2016. "Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China," Agricultural Water Management, Elsevier, vol. 163(C), pages 319-331.
    15. Kumar, Satyendra & Narjary, Bhaskar & Kumar, Kapil & Jat, H.S. & Kamra, S.K. & Yadav, R.K., 2019. "Developing soil matric potential based irrigation strategies of direct seeded rice for improving yield and water productivity," Agricultural Water Management, Elsevier, vol. 215(C), pages 8-15.
    16. Cesari de Maria, Sandra & Rienzner, Michele & Facchi, Arianna & Chiaradia, Enrico Antonio & Romani, Marco & Gandolfi, Claudio, 2016. "Water balance implications of switching from continuous submergence to flush irrigation in a rice-growing district," Agricultural Water Management, Elsevier, vol. 171(C), pages 108-119.
    17. Rejesus, Roderick M. & Palis, Florencia G. & Rodriguez, Divina Gracia P. & Lampayan, Ruben M. & Bouman, Bas A.M., 2011. "Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines," Food Policy, Elsevier, vol. 36(2), pages 280-288, April.
    18. Patel, D.P. & Das, Anup & Munda, G.C. & Ghosh, P.K. & Bordoloi, Juri Sandhya & Kumar, Manoj, 2010. "Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem," Agricultural Water Management, Elsevier, vol. 97(9), pages 1269-1276, September.
    19. Martini, Luiz Fernando Dias & Mezzomo, Rafael Friguetto & Avila, Luis Antonio de & Massey, Joseph Harry & Marchesan, Enio & Zanella, Renato & Peixoto, Sandra Cadore & Refatti, João Paulo & Cassol, Gui, 2013. "Imazethapyr and imazapic runoff under continuous and intermittent irrigation of paddy rice," Agricultural Water Management, Elsevier, vol. 125(C), pages 26-34.
    20. Alberto, Ma. Carmelita R. & Quilty, James R. & Buresh, Roland J. & Wassmann, Reiner & Haidar, Sam & Correa, Teodoro Q. & Sandro, Joseph M., 2014. "Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 1-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:inijae:204761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/isaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.