IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2426-d1050763.html
   My bibliography  Save this article

Pre and Post Water Level Behaviour in Punjab: Impact Analysis with DiD Approach

Author

Listed:
  • Yogita Sharma

    (Department of Agricultural Economics, Bihar Agricultural University, Bhagalpur 813210, Bihar, India)

  • Baljinder Kaur Sidana

    (Department of Economics and Sociology, Punjab Agricultural University, Ludhiana 141004, Punjab, India)

  • Sunny Kumar

    (Department of Economics and Sociology, Punjab Agricultural University, Ludhiana 141004, Punjab, India)

  • Samanpreet Kaur

    (Department of Soil and Water Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab, India)

  • Milkho Kaur Sekhon

    (Department of Economics and Sociology, Punjab Agricultural University, Ludhiana 141004, Punjab, India)

  • Amrit Kaur Mahal

    (Department of Mathematics, Statistics and Physics, Punjab Agricultural University, Ludhiana 141004, Punjab, India)

  • Sushant Mehan

    (Colorado Water Center, Water Management and Systems Research Unit, United States Department of Agriculture–Agricultural Research Service, Fort Collins, CO 80521, USA)

Abstract

Punjab Agriculture is trapped in the complex nexus of groundwater depletion and food insecurity. The policymakers are concerned about reducing groundwater extraction at any cost for irrigation without jeopardizing food security. In this regard, the Government of Punjab introduced the “Punjab Preservation of Subsoil Water Act, 2009”. The present paper examines the impact of the “Preservation of Sub Soil Water Act, 2009” on pre- and post-water levels in Punjab using the difference-in-difference (DiD) approach. The state has witnessed a severe fall of 0.50 m per year and 0.43 m per year for the post-monsoon and pre-monsoon season, respectively. Only 2.62 per cent of wells were in the range of 20–40 m depth in the state in 1996, which increased to 42 per cent and 67 per cent in 2018 for the pre-monsoon period, and post monsoon period respectively, depicting an increase of 25 times. The groundwater depth in high rice-growing(treated) districts declined by 1.53 and 1.39 m than the low rice-growing (control) districts in the pre-monsoon and post-monsoon periods respectively post the enactment of PPSW Act, 2009. A groundwater governance framework is urgently needed to manage the existing and future challenges connected with the groundwater resource.

Suggested Citation

  • Yogita Sharma & Baljinder Kaur Sidana & Sunny Kumar & Samanpreet Kaur & Milkho Kaur Sekhon & Amrit Kaur Mahal & Sushant Mehan, 2023. "Pre and Post Water Level Behaviour in Punjab: Impact Analysis with DiD Approach," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2426-:d:1050763
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2426/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2426/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Molle, Francois & Berkoff, J., 2007. "Irrigation water pricing: the gap between theory and practice," IWMI Books, Reports H040645, International Water Management Institute.
    2. Kaur, Baljinder, 2011. "Impact of Climate Change and Cropping Pattern on Ground Water Resources of Punjab," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 66(3), pages 1-15.
    3. Singh, Karam, 2009. "Act to Save Groundwater in Punjab: Its Impact on Water Table, Electricity Subsidy and Environment," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 22(Conferenc).
    4. Shah, Tushaar & Scott, Christopher & Berkoff, J. & Kishore, A. & Sharma, A., 2007. "The energy-irrigation nexus in South Asia: groundwater conservation and power sector viability," IWMI Books, Reports H040608, International Water Management Institute.
    5. Kaur, Baljinder & Sidhu, R.S. & Vatta, Kamal, 2010. "Optimal Crop Plans for Sustainable Water Use in Punjab," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 23(2), July.
    6. Matthew Rodell & Isabella Velicogna & James S. Famiglietti, 2009. "Satellite-based estimates of groundwater depletion in India," Nature, Nature, vol. 460(7258), pages 999-1002, August.
    7. Kamal Vatta & R. S. Sidhu & Upmanu Lall & P. S. Birthal & Garima Taneja & Baljinder Kaur & Naresh Devineni & Charlotte MacAlister, 2018. "Assessing the economic impact of a low-cost water-saving irrigation technology in Indian Punjab: the tensiometer," Water International, Taylor & Francis Journals, vol. 43(2), pages 305-321, February.
    8. Shah, Tushaar & Scott, C. & Kishore, A. & Sharma, A., 2003. "Energy-irrigation nexus in South Asia: Improving groundwater conservation and power sector viability," IWMI Research Reports H033885, International Water Management Institute.
    9. Sarkar, Anindita, 2020. "Groundwater irrigation and farm power policies in Punjab and West Bengal: Challenges and opportunities," Energy Policy, Elsevier, vol. 140(C).
    10. Kaur, Baljinder & Vatta, Kamal & Sidhu, R.S., 2015. "Optimising Irrigation Water Use in Punjab Agriculture: Role of Crop Diversification and Technology," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 70(3), pages 1-12.
    11. Zhang, Yucui & Lei, Huimin & Zhao, Wenguang & Shen, Yanjun & Xiao, Dengpan, 2018. "Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain," Agricultural Water Management, Elsevier, vol. 198(C), pages 53-64.
    12. David O’Connor & Deyi Hou, 2019. "More haste, less speed in replenishing China’s groundwater," Nature, Nature, vol. 569(7757), pages 487-487, May.
    13. Shah, Tushaar & Scott, Christopher & Berkoff, Jeremy & Kishore, Avinash & Sharma, A., 2007. "The energy-irrigation nexus in South Asia: groundwater conservation and power sector viability," Book Chapters,, International Water Management Institute.
    14. J. S. Famiglietti, 2014. "The global groundwater crisis," Nature Climate Change, Nature, vol. 4(11), pages 945-948, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kishore, Prabhat & Roy, Devesh & Birthal, Pratap S. & Srivastava, Shivendra Kumar, 2024. "Regulation and Policy Response to Groundwater Preservation in India," Policy Papers 345044, ICAR National Institute of Agricultural Economics and Policy Research (NIAP).
    2. repec:ags:icar24:344994 is not listed on IDEAS
    3. repec:ags:iamopb:344994 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Disha Gupta, 2023. "Free power, irrigation, and groundwater depletion: Impact of farm electricity policy of Punjab, India," Agricultural Economics, International Association of Agricultural Economists, vol. 54(4), pages 515-541, July.
    2. repec:ags:icar24:344994 is not listed on IDEAS
    3. repec:ags:iamopb:344994 is not listed on IDEAS
    4. Erenstein, Olaf, 2009. "Comparing water management in rice-wheat production systems in Haryana, India and Punjab, Pakistan," Agricultural Water Management, Elsevier, vol. 96(12), pages 1799-1806, December.
    5. Kishore, Prabhat & Roy, Devesh & Birthal, Pratap S. & Srivastava, Shivendra Kumar, 2024. "Regulation and Policy Response to Groundwater Preservation in India," Policy Papers 345044, ICAR National Institute of Agricultural Economics and Policy Research (NIAP).
    6. Stergios Athanassoglou & Glenn Sheriff & Tobias Siegfried & Woonghee Huh, 2012. "Optimal Mechanisms for Heterogeneous Multi-Cell Aquifers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(2), pages 265-291, June.
    7. Mukherji, A. & Das, B. & Majumdar, N. & Nayak, N.C. & Sethi, R.R. & Sharma, B.R., 2009. "Metering of agricultural power supply in West Bengal, India: Who gains and who loses?," Energy Policy, Elsevier, vol. 37(12), pages 5530-5539, December.
    8. Bjornlund, Vibeke & Bjornlund, Henning, 2019. "Understanding agricultural water management in a historical context using a socioeconomic and biophysical framework," Agricultural Water Management, Elsevier, vol. 213(C), pages 454-467.
    9. Jayanath Ananda & Mohamed Aheeyar, 2020. "An evaluation of groundwater institutions in India: a property rights perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5731-5749, August.
    10. Sahil Bhatia & S. P. Singh, 2024. "Assessing Groundwater Use Efficiency and Productivity across Punjab Agriculture: District and Farm Size Perspectives," Agriculture, MDPI, vol. 14(8), pages 1-24, August.
    11. Sahil Bhatia & S. P. Singh, 2023. "Can an Incentivized Command-and-Control Approach Improve Groundwater Management? An Analysis of Indian Punjab," Sustainability, MDPI, vol. 15(22), pages 1-27, November.
    12. Zareena Begum Irfan & Bina Gupta, 2015. "To Consume or to Conserve: Examining Water Conservation Model for Wheat Cultivation in India," Working Papers 2015-101, Madras School of Economics,Chennai,India.
    13. Kishore, Prabhat & Singh, Dharm Raj & Srivastava, Shivendra & Kumar, Pramod & Jha, Girish Kumar, 2021. "Impact of Subsoil Water Preservation Act, 2009 on Burgeoning Trend of Groundwater Depletion in Punjab, India," 2021 Conference, August 17-31, 2021, Virtual 315198, International Association of Agricultural Economists.
    14. Khan, Abdul Hakeem & McCornick, Peter & Khan, Asim Rauf, 2008. "Evolution of managing water for agriculture in the Indus River Basin," Conference Papers h041859, International Water Management Institute.
    15. Sidana, Baljinder Kaur & Kumar, Sunny, 2021. "Climate adaptation strategies: optimizing farm-level water use and profitability in Punjab," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 34(01), June.
    16. Archisman Mitra & Soumya Balasubramanya & Roy Brouwer, 2023. "Can cash incentives modify groundwater pumping behaviors? Evidence from an experiment in Punjab," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(3), pages 861-887, May.
    17. Liang, Han & Zhou, Yan & Cui, Yaoping & Dong, Jinwei & Gao, Zhenfei & Liu, Bailu & Xiao, Xiangming, 2024. "Is satellite-observed surface water expansion a good signal to China’s largest granary?," Agricultural Water Management, Elsevier, vol. 303(C).
    18. Amarasinghe, Upali A. & Smakhtin, Vladimir U. & Sharma, Bharat R. & Eriyagama, Nishadi, 2010. "Bailout with white revolution or sink deeper?: groundwater depletion and impacts in the Moga District of Punjab, India," IWMI Research Reports 108672, International Water Management Institute.
    19. Masih, Ilyas & Ahmad, Mobin-ud-Din & Uhlenbrook, S. & Turral, Hugh & Karimi, Poolad, 2008. "Overview of streamflow variability and water accounts for the Karkheh Basin, Iran," Conference Papers h041850, International Water Management Institute.
    20. Sudatta Ray & Hemant K. Pullabhotla, 2023. "The changing impact of rural electrification on Indian agriculture," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    21. Ram Fishman, 2018. "Groundwater depletion limits the scope for adaptation to increased rainfall variability in India," Climatic Change, Springer, vol. 147(1), pages 195-209, March.
    22. Satyendra Kumar & Bhaskar Narjary & Vivekanand & Adlul Islam & R. K. Yadav & S. K. Kamra, 2022. "Modeling climate change impact on groundwater and adaptation strategies for its sustainable management in the Karnal district of Northwest India," Climatic Change, Springer, vol. 173(1), pages 1-30, July.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2426-:d:1050763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.