IDEAS home Printed from https://ideas.repec.org/p/zbw/esprep/235859.html
   My bibliography  Save this paper

Dynamic Technical and Environmental Efficiency Performance of Large Gold Mines in Developing Countries

Author

Listed:
  • Magambo, Isaiah Hubert
  • Dikgang, Johane
  • Gelo, Dambala
  • Tregenna, Fiona

Abstract

This study used the by-production model specification to separate emission-generating technologies from ‘desirable outputs’ technology. It then employed the dynamic efficiency model, following the Dynamic Directional Input Distance Function specifications to compute the deterministic, dynamic environmental and technical efficiencies of large gold mines in developing countries. Using firm-level data from 2009 to 2018, the study found that on average, dynamic technical efficiency in these mines was 73%; the average dynamic technical efficiency was observed to have a decreasing trend, of 0.3% annually. The study also found that on average, dynamic environmental efficiency was 56%. However, the average dynamic environmental efficiency trend had a decrease of 0.6% annually. The poor performance and downward trends could be attributed partly to downward investment trends over time, and the increasing complexity of extracting gold deposits from low-grade ore, as well as to prices. They could also be the result either of poor institutional capacity, as far as environmental policies, regulations, and enforcement are concerned; or of supply-side structural rigidity – in particular, low-capacity, and unreliable energy supply, mostly from bad inputs such as coal and heavy fuels or both, which calls for the use of alternative energy sources.

Suggested Citation

  • Magambo, Isaiah Hubert & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Dynamic Technical and Environmental Efficiency Performance of Large Gold Mines in Developing Countries," EconStor Preprints 235859, ZBW - Leibniz Information Centre for Economics.
  • Handle: RePEc:zbw:esprep:235859
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/235859/3/Dynamic%20Technical%20and%20Environmental%20Efficiency%20Performance%20of%20Large%20Gold%20Mines%20in%20Developing%20Countries%20WPv.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hosseinzadeh, Ahmad & Smyth, Russell & Valadkhani, Abbas & Le, Viet, 2016. "Analyzing the efficiency performance of major Australian mining companies using bootstrap data envelopment analysis," Economic Modelling, Elsevier, vol. 57(C), pages 26-35.
    2. Fernandez C. & Koop G. & Steel M.F.J., 2002. "Multiple-Output Production With Undesirable Outputs: An Application to Nitrogen Surplus in Agriculture," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 432-442, June.
    3. Stefanou, Spiro E. & Silva, Elvira, 2007. "AJAE Appendix: Dynamic Efficiency Measurement: Theory and Application," American Journal of Agricultural Economics APPENDICES, Agricultural and Applied Economics Association, vol. 89(2), pages 1-19, May.
    4. Serra, Teresa & Chambers, Robert G. & Oude Lansink, Alfons, 2014. "Measuring technical and environmental efficiency in a state-contingent technology," European Journal of Operational Research, Elsevier, vol. 236(2), pages 706-717.
    5. Elvira Silva & Spiro E. Stefanou, 2007. "Dynamic Efficiency Measurement: Theory and Application," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(2), pages 398-419.
    6. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 2008. "The Measurement of Productive Efficiency and Productivity Growth," OUP Catalogue, Oxford University Press, number 9780195183528.
    7. Sushama Murty & R. Robert Russell, 2018. "Modeling emission-generating technologies: reconciliation of axiomatic and by-production approaches," Empirical Economics, Springer, vol. 54(1), pages 7-30, February.
    8. Rashidi, Kamran & Farzipoor Saen, Reza, 2015. "Measuring eco-efficiency based on green indicators and potentials in energy saving and undesirable output abatement," Energy Economics, Elsevier, vol. 50(C), pages 18-26.
    9. Øivind Anti Nilsen & Fabio Schiantarelli, 2003. "Zeros and Lumps in Investment: Empirical Evidence on Irreversibilities and Nonconvexities," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 1021-1037, November.
    10. Kapelko, Magdalena & Oude Lansink, Alfons, 2017. "Dynamic multi-directional inefficiency analysis of European dairy manufacturing firms," European Journal of Operational Research, Elsevier, vol. 257(1), pages 338-344.
    11. Magdalena Kapelko & Alfons Oude Lansink & Spiro E. Stefanou, 2017. "Input-Specific Dynamic Productivity Change: Measurement and Application to European Dairy Manufacturing Firms," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(2), pages 579-599, June.
    12. Gary Koop & Lise Tole, 2008. "What is the environmental performance of firms overseas? An empirical investigation of the global gold mining industry," Journal of Productivity Analysis, Springer, vol. 30(2), pages 129-143, October.
    13. Nikolaou, I.E. & Evangelinos, K.I., 2010. "A SWOT analysis of environmental management practices in Greek Mining and Mineral Industry," Resources Policy, Elsevier, vol. 35(3), pages 226-234, September.
    14. Kumbhakar, Subal C. & Tsionas, Efthymios G., 2016. "The good, the bad and the technology: Endogeneity in environmental production models," Journal of Econometrics, Elsevier, vol. 190(2), pages 315-327.
    15. Letterie, Wilko A. & Pfann, Gerard A., 2007. "Structural identification of high and low investment regimes," Journal of Monetary Economics, Elsevier, vol. 54(3), pages 797-819, April.
    16. Mortensen, Dale T, 1973. "Generalized Costs of Adjustment and Dynamic Factor Demand Theory," Econometrica, Econometric Society, vol. 41(4), pages 657-665, July.
    17. Song, Malin & Peng, Jun & Wang, Jianlin & Zhao, Jiajia, 2018. "Environmental efficiency and economic growth of China: A Ray slack-based model analysis," European Journal of Operational Research, Elsevier, vol. 269(1), pages 51-63.
    18. Kumbhakar,Subal C. & Wang,Hung-Jen & Horncastle,Alan P., 2015. "A Practitioner's Guide to Stochastic Frontier Analysis Using Stata," Cambridge Books, Cambridge University Press, number 9781107609464.
    19. Ying Li & Yung-Ho Chiu & Liang Chun Lu, 2018. "Regional Energy, CO 2 , and Economic and Air Quality Index Performances in China: A Meta-Frontier Approach," Energies, MDPI, vol. 11(8), pages 1-20, August.
    20. Yir-Hueih Luh & Spiro E. Stefanou, 1996. "Estimating Dynamic Dual Models under Nonstatic Expectations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 991-1003.
    21. Mudd, Gavin M., 2007. "Global trends in gold mining: Towards quantifying environmental and resource sustainability," Resources Policy, Elsevier, vol. 32(1-2), pages 42-56.
    22. Frederic Ang & Alfons Oude Lansink, 2018. "Decomposing dynamic profit inefficiency of Belgian dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(1), pages 81-99.
    23. Atakelty Hailu & Terrence S. Veeman, 2001. "Non-parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 605-616.
    24. Baumol,William J. & Oates,Wallace E., 1988. "The Theory of Environmental Policy," Cambridge Books, Cambridge University Press, number 9780521322249.
    25. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    26. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    27. Beatriz Tovar & Alan Wall, 2017. "Dynamic Cost Efficiency in Port Infrastructure Using a Directional Distance Function: Accounting for the Adjustment of Quasi-Fixed Inputs Over Time," Transportation Science, INFORMS, vol. 51(1), pages 296-304, February.
    28. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    29. Silva, Elvira & Lansink, Alfons Oude & Stefanou, Spiro E., 2015. "The adjustment-cost model of the firm: Duality and productive efficiency," International Journal of Production Economics, Elsevier, vol. 168(C), pages 245-256.
    30. Wilko Letterie & Gerard A. Pfann & Sher Verick, 2010. "On Lumpiness in the Replacement and Expansion of Capital," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(3), pages 263-281, June.
    31. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    32. Kapelko, M. & Horta, I.M. & Camanho, A.S. & Oude Lansink, A., 2015. "Measurement of input-specific productivity growth with an application to the construction industry in Spain and Portugal," International Journal of Production Economics, Elsevier, vol. 166(C), pages 64-71.
    33. Conde, Marta, 2017. "Resistance to Mining. A Review," Ecological Economics, Elsevier, vol. 132(C), pages 80-90.
    34. Chen, Nengcheng & Xu, Lei & Chen, Zeqiang, 2017. "Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models," Energy, Elsevier, vol. 134(C), pages 659-671.
    35. Robert Chambers, 2008. "Stochastic productivity measurement," Journal of Productivity Analysis, Springer, vol. 30(2), pages 107-120, October.
    36. Stijn Reinhard & C.A. Knox Lovell & Geert Thijssen, 1999. "Econometric Estimation of Technical and Environmental Efficiency: An Application to Dutch Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 44-60.
    37. Robert E. Lucas & Jr., 1967. "Adjustment Costs and the Theory of Supply," Journal of Political Economy, University of Chicago Press, vol. 75(4), pages 321-321.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magambo, Isaiah & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Environmental and Technical Efficiency in Large Gold Mines in Developing Countries," MPRA Paper 108068, University Library of Munich, Germany.
    2. Silva, Elvira & Magalhães, Manuela, 2023. "Environmental efficiency, irreversibility and the shadow price of emissions," European Journal of Operational Research, Elsevier, vol. 306(2), pages 955-967.
    3. Silva, Elvira & Lansink, Alfons Oude & Stefanou, Spiro E., 2015. "The adjustment-cost model of the firm: Duality and productive efficiency," International Journal of Production Economics, Elsevier, vol. 168(C), pages 245-256.
    4. Tateishi, Henrique Ryosuke & Bragagnolo, Cassiano & de Faria, Rosane Nunes, 2020. "Economic and environmental efficiencies of greenhouse gases’ emissions under institutional influence," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    5. Dakpo, K Hervé & Lansink, Alfons Oude, 2019. "Dynamic pollution-adjusted inefficiency under the by-production of bad outputs," European Journal of Operational Research, Elsevier, vol. 276(1), pages 202-211.
    6. Engida, Tadesse Getacher & Rao, Xudong & Oude Lansink, Alfons G.J.M., 2020. "A dynamic by-production framework for analyzing inefficiency associated with corporate social responsibility," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1170-1179.
    7. Frederic Ang & Pieter Jan Kerstens, 2023. "Robust nonparametric analysis of dynamic profits, prices and productivity: An application to French meat-processing firms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(2), pages 771-809.
    8. Elvira Silva & Alfons Oude Lansink, 2013. "Dynamic Efficiency Measurement: A Directional Distance Function Approach," CEF.UP Working Papers 1307, Universidade do Porto, Faculdade de Economia do Porto.
    9. Aparicio, Juan & Kapelko, Magdalena & Zofío, José L., 2020. "The measurement of environmental economic inefficiency with pollution-generating technologies," Resource and Energy Economics, Elsevier, vol. 62(C).
    10. Kumbhakar, Subal C. & Tsionas, Efthymios G., 2016. "The good, the bad and the technology: Endogeneity in environmental production models," Journal of Econometrics, Elsevier, vol. 190(2), pages 315-327.
    11. Emir Malikov & Raushan Bokusheva & Subal C. Kumbhakar, 2018. "A hedonic-output-index-based approach to modeling polluting technologies," Empirical Economics, Springer, vol. 54(1), pages 287-308, February.
    12. Emir Malikov & Subal C. Kumbhakar & Efthymios G. Tsionas, 2015. "Bayesian Approach to Disentangling Technical and Environmental Productivity," Econometrics, MDPI, vol. 3(2), pages 1-23, June.
    13. Holtkamp, A.M. & Brummer, B., 2018. "Environmental efficiency of smallholder rubber production," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277518, International Association of Agricultural Economists.
    14. Frederic Ang & Simon M. Mortimer & Francisco J. Areal & Richard Tiffin, 2018. "On the Opportunity Cost of Crop Diversification," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(3), pages 794-814, September.
    15. Sushama Murty & Resham Nagpal, "undated". "Weighted index of graph efficiency improvements for a by-production technology and its application to Indian coal-based thermal power sector," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 18-08, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    16. Sushama Murty & Resham Nagpal, "undated". "Measuring output-based technical efficiency of Indian coal-based thermal power plants: A by-production approach," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 18-07, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    17. Imane Bounadi & Khalil Allali & Aziz Fadlaoui & Mohammed Dehhaoui, 2023. "Water Pollution Abatement in Olive Oil Industry in Morocco: Cost Estimates and Policy Implications," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    18. Serra, Teresa & Chambers, Robert G. & Oude Lansink, Alfons, 2014. "Measuring technical and environmental efficiency in a state-contingent technology," European Journal of Operational Research, Elsevier, vol. 236(2), pages 706-717.
    19. Juan Aparicio & Magdalena Kapelko & Lidia Ortiz, 2021. "Modelling environmental inefficiency under a quota system," Operational Research, Springer, vol. 21(2), pages 1097-1124, June.
    20. Sushama Murty & R. Robert Russell, "undated". "Bad Outputs," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 17-06, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.

    More about this item

    Keywords

    environmental efficiency; gold mines; technical efficiency; undesirable output;
    All these keywords.

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • D25 - Microeconomics - - Production and Organizations - - - Intertemporal Firm Choice: Investment, Capacity, and Financing
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:esprep:235859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.