IDEAS home Printed from https://ideas.repec.org/p/ssb/dispap/337.html
   My bibliography  Save this paper

Greenhouse gas emissions in Norway Do carbon taxes work?

Author

Listed:

Abstract

During the last decade, Norway has carried out an ambitious climate policy. The main policy tool is a relatively high carbon tax, which was implemented already in 1991. Data for the development in CO2 emissions since then provide a unique opportunity to evaluate carbon taxes as a policy tool. To reveal the driving forces behind the changes in the three most important climate gases, CO2, methane and N2O in the period 1990-1999, we decompose the actually observed emissions changes, and use an applied general equilibrium simulation to look into the specific effect of carbon taxes. Although total emissions have increased, we find a significant reduction in emissions per unit of GDP over the period due to reduced energy intensity, changes in the energy mix and reduced process emissions. Despite considerable taxes and price increases for some fuel-types, the carbon tax effect has been modest. While the partial effect from lower energy intensity and energy mix changes was a reduction in CO2 emissions of 14 percent, the carbon taxes contributed to only 2 percent reduction. This relatively small effect relates to extensive tax exemptions and relatively inelastic demand in the sectors in which the tax is actually implemented.

Suggested Citation

  • Annegrete Bruvoll & Bodil Merethe Larsen, 2002. "Greenhouse gas emissions in Norway Do carbon taxes work?," Discussion Papers 337, Statistics Norway, Research Department.
  • Handle: RePEc:ssb:dispap:337
    as

    Download full text from publisher

    File URL: https://www.ssb.no/a/publikasjoner/pdf/DP/dp337.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Schipper, Lee & Murtishaw, Scott & Khrushch, Marta & Ting, Michael & Karbuz, Sohbet & Unander, Fridtjof, 2001. "Carbon emissions from manufacturing energy use in 13 IEA countries: long-term trends through 1995," Energy Policy, Elsevier, vol. 29(9), pages 667-688, July.
    2. Liaskas, K. & Mavrotas, G. & Mandaraka, M. & Diakoulaki, D., 2000. "Decomposition of industrial CO2 emissions:: The case of European Union," Energy Economics, Elsevier, vol. 22(4), pages 383-394, August.
    3. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    4. van der Zwaan, B. C. C. & Gerlagh, R. & G. & Klaassen & Schrattenholzer, L., 2002. "Endogenous technological change in climate change modelling," Energy Economics, Elsevier, vol. 24(1), pages 1-19, January.
    5. Annegrete Bruvoll & Taran Fæhn & Birger Strøm, 2003. "Quantifying Central Hypotheses on Environmental Kuznets Curves for a Rich Economy: A Computable General Equilibrium Study," Scottish Journal of Political Economy, Scottish Economic Society, vol. 50(2), pages 149-173, May.
    6. Sutherland, Ronald J, 1998. "The impact of potential climate change commitments on six industries in the United States," Energy Policy, Elsevier, vol. 26(10), pages 765-776, August.
    7. Hoel, Michael, 1996. "Should a carbon tax be differentiated across sectors?," Journal of Public Economics, Elsevier, vol. 59(1), pages 17-32, January.
    8. Alan S. Manne & Richard G. Richels, 1991. "Global CO2 Emission Reductions - the Impacts of Rising Energy Costs," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 87-108.
    9. Bye, Brita, 2000. "Environmental Tax Reform and Producer Foresight: An Intertemporal Computable General Equilibrium Analysis," Journal of Policy Modeling, Elsevier, vol. 22(6), pages 719-752, November.
    10. Murtishaw, Scott & Schipper, Lee, 2001. "Disaggregated analysis of US energy consumption in the 1990s: evidence of the effects of the internet and rapid economic growth," Energy Policy, Elsevier, vol. 29(15), pages 1335-1356, December.
    11. Aasness, Jorgen & Bye, Torstein & Mysen, Hans Terje, 1996. "Welfare effects of emission taxes in Norway," Energy Economics, Elsevier, vol. 18(4), pages 335-346, October.
    12. Jorgenson, Dale W. & Wilcoxen, Peter J., 1993. "Reducing U.S. carbon dioxide emissions: an assessment of different instruments," Journal of Policy Modeling, Elsevier, vol. 15(5-6), pages 491-520.
    13. Sun, J. W., 1999. "The nature of CO2 emission Kuznets curve," Energy Policy, Elsevier, vol. 27(12), pages 691-694, November.
    14. Annegrete Bruvoll & Hege Medin, 2003. "Factors Behind the Environmental Kuznets Curve. A Decomposition of the Changes in Air Pollution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(1), pages 27-48, January.
    15. Anne Brendemoen & Haakon Vennemo, 1994. "A Climate Treaty and the Norwegian Economy: A CGE Assessment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 77-93.
    16. Paul Ekins & Stefan Speck, 1999. "Competitiveness and Exemptions From Environmental Taxes in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 13(4), pages 369-396, June.
    17. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    18. Brita Bye & Karine Nyborg, 1999. "The Welfare Effects of Carbon Policies: Grandfathered Quotas versus Differentiated Taxes," Discussion Papers 261, Statistics Norway, Research Department.
    19. Thomas M. Selden & Anne S. Forrest & James E. Lockhart, 1999. "Analyzing the Reductions in U.S. Air Pollution Emissions: 1970 to 1990," Land Economics, University of Wisconsin Press, vol. 75(1), pages 1-21.
    20. Glomsrod, Solveig & Vennemo, Haakon & Johnsen, Torgeir, 1992. " Stabilization of Emissions of CO2: A Computable General Equilibrium Assessment," Scandinavian Journal of Economics, Wiley Blackwell, vol. 94(1), pages 53-69.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brita Bye & Snorre Kverndokk & Knut Rosendahl, 2002. "Mitigation costs, distributional effects, and ancillary benefits of carbon policies in the Nordic countries, the U.K., and Ireland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(4), pages 339-366, December.
    2. Bodil Larsen & Runa Nesbakken, 1997. "Norwegian emissions of CO 2 1987–1994," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 9(3), pages 275-290, April.
    3. Lin, Boqiang & Li, Xuehui, 2011. "The effect of carbon tax on per capita CO2 emissions," Energy Policy, Elsevier, vol. 39(9), pages 5137-5146, September.
    4. Kverndokk,S. & Rosendahl,E., 2000. "CO2 mitigation costs and ancillary benefits in the Nordic countries, the UK and Ireland : a survey," Memorandum 34/2000, Oslo University, Department of Economics.
    5. Galindo, Luis Miguel & Beltrán, Allan & Ferrer, Jimy & Alatorre, José Eduardo, 2017. "Efectos potenciales de un impuesto al carbono sobre el producto interno bruto en los países de América Latina: estimaciones preliminares e hipotéticas a partir de un metaanálisis y una función de tran," Documentos de Proyectos 41867, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    6. Dorothée Boccanfuso & Antonio Estache & Luc Savard, 2008. "Distributional impact of global warming environmental policies: A survey," Cahiers de recherche 08-14, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    7. Borghesi, Simone & Vercelli, Alessandro, 2010. "Greenhouse gas emissions and the energy system: decomposition analysis and the environmental Kuznets curve," MPRA Paper 27438, University Library of Munich, Germany.
    8. Steve Sorrell, 2014. "Energy Substitution, Technical Change and Rebound Effects," Energies, MDPI, vol. 7(5), pages 1-24, April.
    9. Snorre Kverndokk & Knut Rosendahl & Thomas Rutherford, 2004. "Climate Policies and Induced Technological Change: Which to Choose, the Carrot or the Stick?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 27(1), pages 21-41, January.
    10. Bruvoll, Annegrete & Faehn, Taran, 2006. "Transboundary effects of environmental policy: Markets and emission leakages," Ecological Economics, Elsevier, vol. 59(4), pages 499-510, October.
    11. Holmøy, Erling, 2016. "The development and use of CGE models in Norway," Journal of Policy Modeling, Elsevier, vol. 38(3), pages 448-474.
    12. Dorothee Boccanfuso & Antonio Estache & Luc Savard, 2011. "The Intra-country Distributional Impact of Policies to Fight Climate Change: A Survey," Journal of Development Studies, Taylor & Francis Journals, vol. 47(1), pages 97-117.
    13. Hémous, David, 2016. "The dynamic impact of unilateral environmental policies," Journal of International Economics, Elsevier, vol. 103(C), pages 80-95.
    14. Stern, David I., 2004. "The Rise and Fall of the Environmental Kuznets Curve," World Development, Elsevier, vol. 32(8), pages 1419-1439, August.
    15. Bodil Larsen, 1997. "Economic impacts of reducing NO x emissions in Norway," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 9(1), pages 125-132, January.
    16. Fujii, Hidemichi & Managi, Shunsuke, 2013. "Which industry is greener? An empirical study of nine industries in OECD countries," Energy Policy, Elsevier, vol. 57(C), pages 381-388.
    17. Bretschger, Lucas & Lechthaler, Filippo & Rausch, Sebastian & Zhang, Lin, 2017. "Knowledge diffusion, endogenous growth, and the costs of global climate policy," European Economic Review, Elsevier, vol. 93(C), pages 47-72.
    18. Aasness, Jorgen & Bye, Torstein & Mysen, Hans Terje, 1996. "Welfare effects of emission taxes in Norway," Energy Economics, Elsevier, vol. 18(4), pages 335-346, October.
    19. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    20. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.

    More about this item

    Keywords

    Greenhouse gas emissions; carbon taxes; applied general equilibrium model;
    All these keywords.

    JEL classification:

    • H21 - Public Economics - - Taxation, Subsidies, and Revenue - - - Efficiency; Optimal Taxation
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssb:dispap:337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: L Maasø (email available below). General contact details of provider: https://edirc.repec.org/data/ssbgvno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.