IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/59033.html
   My bibliography  Save this paper

Bottleneck congestion and distribution of work start times: The economics of staggered work hours revisited

Author

Listed:
  • Takayama, Yuki

Abstract

Since the seminal work of Henderson (1981), a number of studies examined the effect of staggered work hours by analyzing models of work start time choice that consider the trade-off between negative congestion externalities and positive production externalities. However, these studies described traffic congestion using flow congestion models. This study develops a model of work start time choice with bottleneck congestion and discloses the intrinsic properties of the model. To this end, this study extends Henderson’s model to incorporate bottleneck congestion. By utilizing the properties of a potential game, we characterize equilibrium and optimal distributions of work start times. We also show that Pigouvian tax/subsidy policies generally yield multiple equilibria and that the first-best optimum must be a stable equilibrium under Pigouvian policies, whereas the second-best optimum in which policymakers cannot eliminate queuing congestion can be unstable.

Suggested Citation

  • Takayama, Yuki, 2014. "Bottleneck congestion and distribution of work start times: The economics of staggered work hours revisited," MPRA Paper 59033, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:59033
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/59033/4/MPRA_paper_59033.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alex Anas & Richard Arnott & Kenneth A. Small, 1998. "Urban Spatial Structure," Journal of Economic Literature, American Economic Association, vol. 36(3), pages 1426-1464, September.
    2. Mossay, P. & Picard, P.M., 2011. "On spatial equilibria in a social interaction model," Journal of Economic Theory, Elsevier, vol. 146(6), pages 2455-2477.
    3. William H. Sandholm, 2002. "Evolutionary Implementation and Congestion Pricing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(3), pages 667-689.
    4. Arnott, Richard, 2007. "Congestion tolling with agglomeration externalities," Journal of Urban Economics, Elsevier, vol. 62(2), pages 187-203, September.
    5. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    6. Peer, Stefanie & Verhoef, Erik T., 2013. "Equilibrium at a bottleneck when long-run and short-run scheduling preferences diverge," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 12-27.
    7. Sandholm, William H., 2005. "Excess payoff dynamics and other well-behaved evolutionary dynamics," Journal of Economic Theory, Elsevier, vol. 124(2), pages 149-170, October.
    8. Robin Lindsey, 2004. "Existence, Uniqueness, and Trip Cost Function Properties of User Equilibrium in the Bottleneck Model with Multiple User Classes," Transportation Science, INFORMS, vol. 38(3), pages 293-314, August.
    9. Mogens Fosgerau & Kenneth Small, 2017. "Endogenous Scheduling Preferences And Congestion," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(2), pages 585-615, May.
    10. William H. Sandholm, 2005. "Negative Externalities and Evolutionary Implementation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 885-915.
    11. Berliant, Marcus & Peng, Shin-Kun & Wang, Ping, 2002. "Production Externalities and Urban Configuration," Journal of Economic Theory, Elsevier, vol. 104(2), pages 275-303, June.
    12. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    13. Gilboa, Itzhak & Matsui, Akihiko, 1991. "Social Stability and Equilibrium," Econometrica, Econometric Society, vol. 59(3), pages 859-867, May.
    14. Fujita,Masahisa & Thisse,Jacques-François, 2013. "Economics of Agglomeration," Cambridge Books, Cambridge University Press, number 9781107001411.
    15. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    16. Akamatsu, Takashi & Fujishima, Shota & Takayama, Yuki, 2014. "On Stable Equilibria in Discrete-Space Social Interaction Models," MPRA Paper 55938, University Library of Munich, Germany.
    17. Carlos F. Daganzo, 1985. "The Uniqueness of a Time-dependent Equilibrium Distribution of Arrivals at a Single Bottleneck," Transportation Science, INFORMS, vol. 19(1), pages 29-37, February.
    18. Zhang, Xiaoning & Huang, Hai-Jun & Zhang, H.M., 2008. "Integrated daily commuting patterns and optimal road tolls and parking fees in a linear city," Transportation Research Part B: Methodological, Elsevier, vol. 42(1), pages 38-56, January.
    19. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    20. Wada, Kentaro & Akamatsu, Takashi, 2013. "A hybrid implementation mechanism of tradable network permits system which obviates path enumeration: An auction mechanism with day-to-day capacity control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 94-112.
    21. Henderson, J. Vernon, 1981. "The economics of staggered work hours," Journal of Urban Economics, Elsevier, vol. 9(3), pages 349-364, May.
    22. Gubins, Sergejs & Verhoef, Erik T., 2014. "Dynamic bottleneck congestion and residential land use in the monocentric city," Journal of Urban Economics, Elsevier, vol. 80(C), pages 51-61.
    23. Michael J. Smith, 1984. "The Existence of a Time-Dependent Equilibrium Distribution of Arrivals at a Single Bottleneck," Transportation Science, INFORMS, vol. 18(4), pages 385-394, November.
    24. Richard Arnott & Tilmann Rave & Ronnie Schöb, 2005. "Alleviating Urban Traffic Congestion," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012197, December.
    25. Se-il Mun & Makoto Yonekawa, 2006. "Flextime, Traffic Congestion and Urban Productivity," Journal of Transport Economics and Policy, University of Bath, vol. 40(3), pages 329-358, September.
    26. Tabuchi, Takatoshi, 1986. "Urban agglomeration economies in a Linear City," Regional Science and Urban Economics, Elsevier, vol. 16(3), pages 421-436, August.
    27. Sandholm, William H., 2001. "Potential Games with Continuous Player Sets," Journal of Economic Theory, Elsevier, vol. 97(1), pages 81-108, March.
    28. Gonzales, Eric J. & Daganzo, Carlos F., 2012. "Morning commute with competing modes and distributed demand: User equilibrium, system optimum, and pricing," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1519-1534.
    29. Wilson, Paul W., 1992. "Residential location and scheduling of work hours," Journal of Urban Economics, Elsevier, vol. 31(3), pages 325-336, May.
    30. E Verhoef & P Nijkamp & P Rietveld, 1997. "Tradeable Permits: Their Potential in the Regulation of Road Transport Externalities," Environment and Planning B, , vol. 24(4), pages 527-548, August.
    31. Fujita, Masahisa & Ogawa, Hideaki, 1982. "Multiple equilibria and structural transition of non-monocentric urban configurations," Regional Science and Urban Economics, Elsevier, vol. 12(2), pages 161-196, May.
    32. Chris Hendrickson & George Kocur, 1981. "Schedule Delay and Departure Time Decisions in a Deterministic Model," Transportation Science, INFORMS, vol. 15(1), pages 62-77, February.
    33. Masao Kuwahara, 1990. "Equilibrium Queueing Patterns at a Two-Tandem Bottleneck during the Morning Peak," Transportation Science, INFORMS, vol. 24(3), pages 217-229, August.
    34. Yang, Hai & Wang, Xiaolei, 2011. "Managing network mobility with tradable credits," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 580-594, March.
    35. Fujita, Masahisa, 1988. "A monopolistic competition model of spatial agglomeration : Differentiated product approach," Regional Science and Urban Economics, Elsevier, vol. 18(1), pages 87-124, February.
    36. Theodore Tsekeris & Stefan Voß, 2009. "Design and evaluation of road pricing: state-of-the-art and methodological advances," Netnomics, Springer, vol. 10(1), pages 5-52, April.
    37. Lago, Alejandro & Daganzo, Carlos F., 2007. "Spillovers, merging traffic and the morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 41(6), pages 670-683, July.
    38. Wilson, Paul W., 1988. "Wage variation resulting from staggered work hours," Journal of Urban Economics, Elsevier, vol. 24(1), pages 9-26, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luan, Xiaojie & Corman, Francesco, 2022. "Passenger-oriented traffic control for rail networks: An optimization model considering crowding effects on passenger choices and train operations," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 239-272.
    2. Takayama, Yuki & Kuwahara, Masao, 2017. "Bottleneck congestion and residential location of heterogeneous commuters," Journal of Urban Economics, Elsevier, vol. 100(C), pages 65-79.
    3. Verhoef, Erik T., 2020. "Optimal congestion pricing with diverging long-run and short-run scheduling preferences," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 191-209.
    4. Takayama, Yuki & Kuwahara, Masao, 2016. "Scheduling preferences, parking competition, and bottleneck congestion: A model of trip timing and parking location choices by heterogeneous commuters," MPRA Paper 68938, University Library of Munich, Germany.
    5. Takayama, Yuki, 2020. "Who gains and who loses from congestion pricing in a monocentric city with a bottleneck?," Economics of Transportation, Elsevier, vol. 24(C).
    6. Osawa, Minoru & Fu, Haoran & Akamatsu, Takashi, 2018. "First-best dynamic assignment of commuters with endogenous heterogeneities in a corridor network," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 811-831.
    7. Bao, Yue & Xiao, Feng & Gao, Zaihan & Gao, Ziyou, 2017. "Investigation of the traffic congestion during public holiday and the impact of the toll-exemption policy," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 58-81.
    8. Zhang, Fangni & Liu, Wei & Wang, Xiaolei & Yang, Hai, 2017. "A new look at the morning commute with household shared-ride: How does school location play a role?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 198-217.
    9. Liu, Wei & Zhang, Fangni & Yang, Hai, 2017. "Modeling and managing morning commute with both household and individual travels," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 227-247.
    10. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    11. Su, Qida & Wang, David Z.W., 2020. "On the commute travel pattern with compressed work schedule," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 334-356.
    12. Takayama, Yuki, 2018. "Time-varying congestion tolling and urban spatial structure," MPRA Paper 89896, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    2. Takayama, Yuki & Kuwahara, Masao, 2017. "Bottleneck congestion and residential location of heterogeneous commuters," Journal of Urban Economics, Elsevier, vol. 100(C), pages 65-79.
    3. Takayama, Yuki, 2020. "Who gains and who loses from congestion pricing in a monocentric city with a bottleneck?," Economics of Transportation, Elsevier, vol. 24(C).
    4. Mogens Fosgerau & André de Palma & Anders Karlstrom & Kenneth A. Small, 2012. "Trip timing and scheduling preferences," Working Papers hal-00742267, HAL.
    5. Osawa, Minoru & Fu, Haoran & Akamatsu, Takashi, 2018. "First-best dynamic assignment of commuters with endogenous heterogeneities in a corridor network," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 811-831.
    6. Takayama, Yuki & Kuwahara, Masao, 2016. "Scheduling preferences, parking competition, and bottleneck congestion: A model of trip timing and parking location choices by heterogeneous commuters," MPRA Paper 68938, University Library of Munich, Germany.
    7. Nie, Yu (Marco) & Yin, Yafeng, 2013. "Managing rush hour travel choices with tradable credit scheme," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 1-19.
    8. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    9. Takayama, Yuki, 2018. "Time-varying congestion tolling and urban spatial structure," MPRA Paper 89896, University Library of Munich, Germany.
    10. Mogens Fosgerau & Kenneth Small, 2017. "Endogenous Scheduling Preferences And Congestion," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(2), pages 585-615, May.
    11. Peer, Stefanie & Verhoef, Erik T., 2013. "Equilibrium at a bottleneck when long-run and short-run scheduling preferences diverge," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 12-27.
    12. Wada, Kentaro & Akamatsu, Takashi, 2013. "A hybrid implementation mechanism of tradable network permits system which obviates path enumeration: An auction mechanism with day-to-day capacity control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 94-112.
    13. Ramadurai, Gitakrishnan & Ukkusuri, Satish V. & Zhao, Jinye & Pang, Jong-Shi, 2010. "Linear complementarity formulation for single bottleneck model with heterogeneous commuters," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 193-214, February.
    14. Small, Kenneth A., 2015. "The bottleneck model: An assessment and interpretation," Economics of Transportation, Elsevier, vol. 4(1), pages 110-117.
    15. Liu, Wei & Zhang, Fangni & Yang, Hai, 2017. "Modeling and managing morning commute with both household and individual travels," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 227-247.
    16. Amirgholy, Mahyar & Gao, H. Oliver, 2017. "Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: User equilibrium, system optimum, and pricing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 215-237.
    17. Yu Nie, 2015. "A New Tradable Credit Scheme for the Morning Commute Problem," Networks and Spatial Economics, Springer, vol. 15(3), pages 719-741, September.
    18. Fosgerau, Mogens & de Palma, André, 2012. "Congestion in a city with a central bottleneck," Journal of Urban Economics, Elsevier, vol. 71(3), pages 269-277.
    19. Akamatsu, Takashi & Fujishima, Shota & Takayama, Yuki, 2017. "Discrete-space agglomeration model with social interactions: Multiplicity, stability, and continuous limit of equilibria," Journal of Mathematical Economics, Elsevier, vol. 69(C), pages 22-37.
    20. Fu, Haoran & Akamatsu, Takashi & Satsukawa, Koki & Wada, Kentaro, 2022. "Dynamic traffic assignment in a corridor network: Optimum versus equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 218-246.

    More about this item

    Keywords

    staggered work hours; bottleneck congestion; production effects; potential game; stability; Pigouvian policies;
    All these keywords.

    JEL classification:

    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • D62 - Microeconomics - - Welfare Economics - - - Externalities
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • R48 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government Pricing and Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:59033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.