IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v44y2010i2p193-214.html
   My bibliography  Save this article

Linear complementarity formulation for single bottleneck model with heterogeneous commuters

Author

Listed:
  • Ramadurai, Gitakrishnan
  • Ukkusuri, Satish V.
  • Zhao, Jinye
  • Pang, Jong-Shi

Abstract

This paper formulates the dynamic equilibrium conditions for a single bottleneck model with heterogeneous commuters as a linear complementarity problem. This novel formulation offers a formal framework for the rigorous study and solution of a single bottleneck model with general heterogeneity parameter assumptions, enabling the adoption of well established complementarity theory and methods to analyze the model, and providing a significant contribution to the existing literature that either lacks a rigorous formulation or solves the problem under a limited set of heterogeneity parameter assumptions. The paper presents theoretical proofs for solution existence and uniqueness, and numerical results and insights for different heterogeneity assumptions.

Suggested Citation

  • Ramadurai, Gitakrishnan & Ukkusuri, Satish V. & Zhao, Jinye & Pang, Jong-Shi, 2010. "Linear complementarity formulation for single bottleneck model with heterogeneous commuters," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 193-214, February.
  • Handle: RePEc:eee:transb:v:44:y:2010:i:2:p:193-214
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(09)00084-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lago, Alejandro, 2003. "Spatial Models of Morning Commute Consistent with Realistic Traffic Behavior," University of California Transportation Center, Working Papers qt4nd315bv, University of California Transportation Center.
    2. Chu, Xuehao, 1999. "Alternative congestion pricing schedules," Regional Science and Urban Economics, Elsevier, vol. 29(6), pages 697-722, November.
    3. Mun, Se-il, 1999. "Peak-Load Pricing of a Bottleneck with Traffic Jam," Journal of Urban Economics, Elsevier, vol. 46(3), pages 323-349, November.
    4. Michael J. Smith, 1984. "The Existence of a Time-Dependent Equilibrium Distribution of Arrivals at a Single Bottleneck," Transportation Science, INFORMS, vol. 18(4), pages 385-394, November.
    5. Anthony Ziegelmeyer & Frédéric Koessler & Kene Boun My & Laurent Denant-Boèmont, 2008. "Road Traffic Congestion and Public Information: An Experimental Investigation," Journal of Transport Economics and Policy, University of Bath, vol. 42(1), pages 43-82, January.
    6. Carlos F. Daganzo & Reinaldo C. Garcia, 2000. "A Pareto Improving Strategy for the Time-Dependent Morning Commute Problem," Transportation Science, INFORMS, vol. 34(3), pages 303-311, August.
    7. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1999. "Information and time-of-usage decisions in the bottleneck model with stochastic capacity and demand," European Economic Review, Elsevier, vol. 43(3), pages 525-548, March.
    8. Se-il Mun & Makoto Yonekawa, 2006. "Flextime, Traffic Congestion and Urban Productivity," Journal of Transport Economics and Policy, University of Bath, vol. 40(3), pages 329-358, September.
    9. Richard Arnott & André de Palma & Robin Lindsey, 1993. "Properties of Dynamic Traffic Equilibrium Involving Bottlenecks, Including a Paradox and Metering," Transportation Science, INFORMS, vol. 27(2), pages 148-160, May.
    10. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    11. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1992. "Route choice with heterogeneous drivers and group-specific congestion costs," Regional Science and Urban Economics, Elsevier, vol. 22(1), pages 71-102, March.
    12. Lago, Alejandro, 2003. "Spatial Models of Morning Commute Consistent with Realistic Traffic Behavior," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6wk3t20s, Institute of Transportation Studies, UC Berkeley.
    13. Gordon F. Newell, 1987. "The Morning Commute for Nonidentical Travelers," Transportation Science, INFORMS, vol. 21(2), pages 74-88, May.
    14. Yang, Hai & Hai-Jun, Huang, 1997. "Analysis of the time-varying pricing of a bottleneck with elastic demand using optimal control theory," Transportation Research Part B: Methodological, Elsevier, vol. 31(6), pages 425-440, November.
    15. Robin Lindsey, 2004. "Existence, Uniqueness, and Trip Cost Function Properties of User Equilibrium in the Bottleneck Model with Multiple User Classes," Transportation Science, INFORMS, vol. 38(3), pages 293-314, August.
    16. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    17. C. E. Lemke, 1965. "Bimatrix Equilibrium Points and Mathematical Programming," Management Science, INFORMS, vol. 11(7), pages 681-689, May.
    18. Chris Hendrickson & George Kocur, 1981. "Schedule Delay and Departure Time Decisions in a Deterministic Model," Transportation Science, INFORMS, vol. 15(1), pages 62-77, February.
    19. Kenneth A. Small & Clifford Winston & Jia Yan, 2005. "Uncovering the Distribution of Motorists' Preferences for Travel Time and Reliability," Econometrica, Econometric Society, vol. 73(4), pages 1367-1382, July.
    20. Masao Kuwahara, 1990. "Equilibrium Queueing Patterns at a Two-Tandem Bottleneck during the Morning Peak," Transportation Science, INFORMS, vol. 24(3), pages 217-229, August.
    21. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    22. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    23. Carlos F. Daganzo, 1985. "The Uniqueness of a Time-dependent Equilibrium Distribution of Arrivals at a Single Bottleneck," Transportation Science, INFORMS, vol. 19(1), pages 29-37, February.
    24. Donald K. Richter & John Griffin & Richard Arnott, 1990. "Computation of Dynamic User Equilibria in a Model of Peak Period Traffic Congestion with Heterogenous Commuters," Boston College Working Papers in Economics 198, Boston College Department of Economics.
    25. Erik T. Verhoef & Kenneth A. Small, 2004. "Product Differentiation on Roads," Journal of Transport Economics and Policy, University of Bath, vol. 38(1), pages 127-156, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    2. Small, Kenneth A., 2015. "The bottleneck model: An assessment and interpretation," Economics of Transportation, Elsevier, vol. 4(1), pages 110-117.
    3. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    4. Chen, Hongyu & Liu, Yang & Nie, Yu (Marco), 2015. "Solving the step-tolled bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 210-229.
    5. Nie, Yu (Marco) & Yin, Yafeng, 2013. "Managing rush hour travel choices with tradable credit scheme," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 1-19.
    6. Yu Nie, 2015. "A New Tradable Credit Scheme for the Morning Commute Problem," Networks and Spatial Economics, Springer, vol. 15(3), pages 719-741, September.
    7. Wu, Wen-Xiang & Huang, Hai-Jun, 2015. "An ordinary differential equation formulation of the bottleneck model with user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 34-58.
    8. Liu, Yang & Nie, Yu (Marco) & Hall, Jonathan, 2015. "A semi-analytical approach for solving the bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 56-70.
    9. Chen, Hongyu & Nie, Yu (Marco) & Yin, Yafeng, 2015. "Optimal multi-step toll design under general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 775-793.
    10. Takayama, Yuki, 2018. "Time-varying congestion tolling and urban spatial structure," MPRA Paper 89896, University Library of Munich, Germany.
    11. Liu, Yang & Nie, Yu (Marco), 2011. "Morning commute problem considering route choice, user heterogeneity and alternative system optima," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 619-642.
    12. Fosgerau, Mogens & de Palma, André, 2012. "Congestion in a city with a central bottleneck," Journal of Urban Economics, Elsevier, vol. 71(3), pages 269-277.
    13. Shen, Wei & Zhang, H.M., 2010. "Pareto-improving ramp metering strategies for reducing congestion in the morning commute," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 676-696, November.
    14. Takayama, Yuki & Kuwahara, Masao, 2017. "Bottleneck congestion and residential location of heterogeneous commuters," Journal of Urban Economics, Elsevier, vol. 100(C), pages 65-79.
    15. Peer, Stefanie & Verhoef, Erik T., 2013. "Equilibrium at a bottleneck when long-run and short-run scheduling preferences diverge," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 12-27.
    16. Ling-Ling Xiao & Hai-Jun Huang & Ronghui Liu, 2015. "Congestion Behavior and Tolls in a Bottleneck Model with Stochastic Capacity," Transportation Science, INFORMS, vol. 49(1), pages 46-65, February.
    17. Sun, Xiaoyan & Han, Xiao & Bao, Jian-Zhang & Jiang, Rui & Jia, Bin & Yan, Xiaoyong & Zhang, Boyu & Wang, Wen-Xu & Gao, Zi-You, 2017. "Decision dynamics of departure times: Experiments and modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 74-82.
    18. Amirgholy, Mahyar & Gao, H. Oliver, 2017. "Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: User equilibrium, system optimum, and pricing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 215-237.
    19. Lago, Alejandro & Daganzo, Carlos F., 2007. "Spillovers, merging traffic and the morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 41(6), pages 670-683, July.
    20. Takayama, Yuki, 2020. "Who gains and who loses from congestion pricing in a monocentric city with a bottleneck?," Economics of Transportation, Elsevier, vol. 24(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:44:y:2010:i:2:p:193-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.