IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-02909818.html
   My bibliography  Save this paper

Deep neural network for optimal retirement consumption in defined contribution pension system
[Réseau de neurones profond pour consommation à la retraite optimale en système de retraite à cotisations définies]

Author

Listed:
  • Wen Chen

    (CSIRO - Commonwealth Scientific and Industrial Research Organisation [Canberra])

  • Nicolas Langrené

    (CSIRO - Commonwealth Scientific and Industrial Research Organisation [Canberra])

Abstract

In this paper, we develop a deep neural network approach to solve a lifetime expected mortality-weighted utility-based model for optimal consumption in the decumulation phase of a defined contribution pension system. We formulate this problem as a multi-period finite-horizon stochastic control problem and train a deep neural network policy representing consumption decisions. The optimal consumption policy is determined by personal information about the retiree such as age, wealth, risk aversion and bequest motive, as well as a series of economic and financial variables including inflation rates and asset returns jointly simulated from a proposed seven-factor economic scenario generator calibrated from market data. We use the Australian pension system as an example, with consideration of the government-funded means-tested Age Pension and other practical aspects such as fund management fees. The key findings from our numerical tests are as follows. First, our deep neural network optimal consumption policy, which adapts to changes in market conditions, outperforms deterministic drawdown rules proposed in the literature. Moreover, the out-of-sample outperformance ratios increase as the number of training iterations increases, eventually reaching outperformance on all testing scenarios after less than 10 minutes of training. Second, a sensitivity analysis is performed to reveal how risk aversion and bequest motives change the consumption over a retiree's lifetime under this utility framework. Our results show that stronger risk aversion generates a flatter consumption pattern; however, there is not much difference in consumption with or without bequest until age 103. Third, we provide the optimal consumption rate with different starting wealth balances. We observe that optimal consumption rates are not proportional to initial wealth due to the Age Pension payment. Forth, with the same initial wealth balance and utility parameter settings, the optimal consumption level is different between males and females due to gender differences in mortality. Specifically, the optimal consumption level is slightly lower for females until age 84.

Suggested Citation

  • Wen Chen & Nicolas Langrené, 2020. "Deep neural network for optimal retirement consumption in defined contribution pension system [Réseau de neurones profond pour consommation à la retraite optimale en système de retraite à cotisatio," Working Papers hal-02909818, HAL.
  • Handle: RePEc:hal:wpaper:hal-02909818
    Note: View the original document on HAL open archive server: https://hal.science/hal-02909818v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02909818v1/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andréasson, Johan G. & Shevchenko, Pavel V. & Novikov, Alex, 2017. "Optimal consumption, investment and housing with means-tested public pension in retirement," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 32-47.
    2. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 843-877, May.
    3. Wilkie, A. D. & Åžahin, Åžule, 2017. "Yet more on a stochastic economic model: Part 3B: stochastic bridging for retail prices and wages," Annals of Actuarial Science, Cambridge University Press, vol. 11(1), pages 100-127, March.
    4. H. M. Amman & D. A. Kendrick & J. Rust (ed.), 1996. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 1, number 1.
    5. Butt, Adam & Deng, Ziyong, 2012. "Investment strategies in retirement: in the presence of a means-tested government pension," Journal of Pension Economics and Finance, Cambridge University Press, vol. 11(2), pages 151-181, April.
    6. Ding, Jie & Kingston, Geoffrey & Purcal, Sachi, 2014. "Dynamic asset allocation when bequests are luxury goods," Journal of Economic Dynamics and Control, Elsevier, vol. 38(C), pages 65-71.
    7. Huang, Huaxiong & Milevsky, Moshe A. & Salisbury, Thomas S., 2012. "Optimal retirement consumption with a stochastic force of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 282-291.
    8. Rust, John, 1996. "Numerical dynamic programming in economics," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 14, pages 619-729, Elsevier.
    9. Wilkie, A. D. & Åžahin, Åžule, 2019. "Yet more on a stochastic economic model: Part 5: a vector autoregressive (VAR) Model for retail prices and wages," Annals of Actuarial Science, Cambridge University Press, vol. 13(1), pages 92-108, March.
    10. Wilkie, A.D., 1995. "More on a Stochastic Asset Model for Actuarial Use," British Actuarial Journal, Cambridge University Press, vol. 1(5), pages 777-964, December.
    11. Mao, Hong & Ostaszewski, Krzysztof M. & Wang, Yuling, 2014. "Optimal retirement age, leisure and consumption," Economic Modelling, Elsevier, vol. 43(C), pages 458-464.
    12. Li, Yuying & Forsyth, Peter A., 2019. "A data-driven neural network approach to optimal asset allocation for target based defined contribution pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 189-204.
    13. Peter A. Forsyth & Kenneth R. Vetzal & Graham Westmacott, 2019. "Management of Portfolio Depletion Risk through Optimal Life Cycle Asset Allocation," North American Actuarial Journal, Taylor & Francis Journals, vol. 23(3), pages 447-468, July.
    14. Jin, Zhuo & Liu, Guo & Yang, Hailiang, 2020. "Optimal consumption and investment strategies with liquidity risk and lifetime uncertainty for Markov regime-switching jump diffusion models," European Journal of Operational Research, Elsevier, vol. 280(3), pages 1130-1143.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen Chen & Nicolas Langren'e, 2020. "Deep neural network for optimal retirement consumption in defined contribution pension system," Papers 2007.09911, arXiv.org, revised Jul 2020.
    2. Maurizio Iacopetta, 2014. "Dynamics of assets liquidity and inequality in economies with decentralized markets," Sciences Po publications info:hdl:2441/2029nqlehl8, Sciences Po.
    3. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, December.
    4. Kenneth L. Judd & Lilia Maliar & Serguei Maliar & Inna Tsener, 2017. "How to solve dynamic stochastic models computing expectations just once," Quantitative Economics, Econometric Society, vol. 8(3), pages 851-893, November.
    5. Hanwen Zhang & Duy-Minh Dang, 2023. "A monotone numerical integration method for mean-variance portfolio optimization under jump-diffusion models," Papers 2309.05977, arXiv.org.
    6. Song Lin & Juanjuan Zhang & John R. Hauser, 2015. "Learning from Experience, Simply," Marketing Science, INFORMS, vol. 34(1), pages 1-19, January.
    7. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    8. Barillas, Francisco & Fernandez-Villaverde, Jesus, 2007. "A generalization of the endogenous grid method," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2698-2712, August.
    9. Serguei Maliar & John Taylor & Lilia Maliar, 2016. "The Impact of Alternative Transitions to Normalized Monetary Policy," 2016 Meeting Papers 794, Society for Economic Dynamics.
    10. Butt, Adam & Khemka, Gaurav & Warren, Geoffrey J., 2022. "Heterogeneity in optimal investment and drawdown strategies in retirement," Pacific-Basin Finance Journal, Elsevier, vol. 74(C).
    11. Yongyang Cai & Kenneth L. Judd, 2023. "A simple but powerful simulated certainty equivalent approximation method for dynamic stochastic problems," Quantitative Economics, Econometric Society, vol. 14(2), pages 651-687, May.
    12. Francis X. Diebold, 1998. "The Past, Present, and Future of Macroeconomic Forecasting," Journal of Economic Perspectives, American Economic Association, vol. 12(2), pages 175-192, Spring.
    13. Prowse, Victoria L., 2006. "Part-time Work and Occupational Attainment Amongst a Cohort of British Women," IZA Discussion Papers 2342, Institute of Labor Economics (IZA).
    14. repec:hal:spmain:info:hdl:2441/3ug0u3qte39q7rqvbmij9rb993 is not listed on IDEAS
    15. King, Robert P. & Lohano, Heman D., 2006. "Accuracy of Numerical Solution to Dynamic Programming Models," Staff Papers 14230, University of Minnesota, Department of Applied Economics.
    16. Christiano, Lawrence J. & Fisher, Jonas D. M., 2000. "Algorithms for solving dynamic models with occasionally binding constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 24(8), pages 1179-1232, July.
    17. Lars Grüne & Willi Semmler, 2007. "Asset pricing with dynamic programming," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 233-265, May.
    18. repec:hal:spmain:info:hdl:2441/2029nqlehl81soi17i2hktujh9 is not listed on IDEAS
    19. Jean Barthélemy & Magali Marx, 2012. "Solving Rational Expectations Models," Sciences Po publications info:hdl:2441/3ug0u3qte39, Sciences Po.
    20. Victor Aguirregabiria & Arvind Magesan, 2013. "Euler Equations for the Estimation of Dynamic Discrete Choice Structural Models," Advances in Econometrics, in: Structural Econometric Models, volume 31, pages 3-44, Emerald Group Publishing Limited.
    21. Gamba, Andrea & Tesser, Matteo, 2009. "Structural estimation of real options models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 798-816, April.
    22. Michael Keane & Richard Rogerson, 2015. "Reconciling Micro and Macro Labor Supply Elasticities: A Structural Perspective," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 89-117, 08.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-02909818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.