Advanced Search
MyIDEAS: Login

Semi-Parametric Weak Instrument Regressions with an Application to the Risk-return Trade-off

Contents:

Author Info

  • Benoit Perron

    (Universite de Montreal)

Abstract

Recent work shows that a low correlation between the instruments and the included variables leads to serious inference problems. We extend the local-to-zero analysis of models with weak instruments to models with estimated instruments and regressors and with higher-order dependence between instruments and disturbances. This makes this framework applicable to linear models with expectation variables that are estimated non-parametrically. Two examples of such models are the risk-return trade-off in finance and the impact of inflation uncertainty on real economic activity. Using more robust LM confidence intervals leads us to conclude that no statistically significant risk premium is present in returns on the S&P 500 index, excess holding yields between 6-month and 3-month Treasury bills, or in yen-dollar spot returns.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://fmwww.bc.edu/RePEc/es2000/1576.pdf
File Function: main text
Download Restriction: no

Bibliographic Info

Paper provided by Econometric Society in its series Econometric Society World Congress 2000 Contributed Papers with number 1576.

as in new window
Length:
Date of creation: 01 Aug 2000
Date of revision:
Handle: RePEc:ecm:wc2000:1576

Contact details of provider:
Phone: 1 212 998 3820
Fax: 1 212 995 4487
Email:
Web page: http://www.econometricsociety.org/pastmeetings.asp
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Nelson, C. & Startz, R., 1988. "The Distribution Of The Instrumental Variables Estimator And Its T-Ratio When The Instrument Is A Poor One," Discussion Papers in Economics at the University of Washington 88-07, Department of Economics at the University of Washington.
  2. Richard Startz & Charles Nelson & Eric Zivot, 1999. "Improved Inference for the Instrumental Variable Estimator," Discussion Papers in Economics at the University of Washington 0039, Department of Economics at the University of Washington.
  3. David K. Backus & Allan W. Gregory, 1992. "Theoretical Relations Between Risk Premiums and Conditional Variances," Working Papers 92-18a, New York University, Leonard N. Stern School of Business, Department of Economics.
  4. Dufour, J.M., 1995. "Some Impossibility Theorems in Econometrics with Applications to Instrumental Variables, Dynamic Models and Cointegration," Cahiers de recherche 9539, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  5. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(02), pages 181-240, August.
  6. In Choi & Peter C.B. Phillips, 1989. "Asymptotic and Finite Sample Distribution Theory for IV Estimators and Tests in Partially Identified Structural Equations," Cowles Foundation Discussion Papers 929, Cowles Foundation for Research in Economics, Yale University.
  7. Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
  8. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
  9. Jiahui Wang & Eric Zivot, 1998. "Inference on Structural Parameters in Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 66(6), pages 1389-1404, November.
  10. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
  11. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
  12. Torben G. Andersen & Tim Bollerslev, 1997. "Answering the Critics: Yes, ARCH Models Do Provide Good Volatility Forecasts," NBER Working Papers 6023, National Bureau of Economic Research, Inc.
  13. Zivot, E & Startz, R & Nelson, C-R, 1997. "Valid Confidence Intervals and Inference in the Presence of Weak Instruments," Discussion Papers in Economics at the University of Washington 97-17, Department of Economics at the University of Washington.
  14. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  15. Jean-Marie Dufour & Joanna Jasiak, 2000. "Finite Sample Inference Methods for Simultaneous Equations and Models with Unobserved and Generated Regressors," Econometric Society World Congress 2000 Contributed Papers 1536, Econometric Society.
  16. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
  17. repec:cup:etheor:v:11:y:1995:i:3:p:560-96 is not listed on IDEAS
  18. Pagan, Adrian & Ullah, Aman, 1988. "The Econometric Analysis of Models with Risk Terms," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 3(2), pages 87-105, April.
  19. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
  20. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(03), pages 560-586, June.
  21. Hall, Alastair R & Rudebusch, Glenn D & Wilcox, David W, 1996. "Judging Instrument Relevance in Instrumental Variables Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(2), pages 283-98, May.
  22. Pagan, Adrian, 1984. "Econometric Issues in the Analysis of Regressions with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(1), pages 221-47, February.
  23. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
  24. Masry, Elias & Tjøstheim, Dag, 1995. "Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality," Econometric Theory, Cambridge University Press, vol. 11(02), pages 258-289, February.
  25. David K. Backus & Allan W. Gregory & Stanley E. Zin, 1986. "Risk Premiums in the Term Structure : Evidence from Artificial Economies," Working Papers 665, Queen's University, Department of Economics.
  26. Sentana, Enrique & Wadhwani, Sushil, 1991. "Semi-parametric Estimation and the Predictability of Stock Market Returns: Some Lessons from Japan," Review of Economic Studies, Wiley Blackwell, vol. 58(3), pages 547-63, May.
  27. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
  28. Froot, Kenneth A & Thaler, Richard H, 1990. "Foreign Exchange," Journal of Economic Perspectives, American Economic Association, vol. 4(3), pages 179-92, Summer.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. DUFOUR, Jean-Marie, 2003. "Identification, Weak Instruments and Statistical Inference in Econometrics," Cahiers de recherche 10-2003, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  2. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:1576. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.