IDEAS home Printed from https://ideas.repec.org/a/pal/risman/v25y2023i3d10.1057_s41283-023-00119-z.html
   My bibliography  Save this article

Robust management of climate risk damages

Author

Listed:
  • Riccardo Rebonato

    (EDHEC Risk Climate Impact Institute)

  • Riccardo Ronzani

    (Universita’ Bocconi)

  • Lionel Melin

    (EDHEC Risk Climate Impact Institute)

Abstract

We consider the case of a risk manager or policymaker who does not know the true climate and economic parameters of the Dynamic Integrated Climate Economy (DICE) model and who, because of political or social constraints, cannot act optimally. We find that the impact of parameter uncertainty on economic outcomes is much more pronounced away from optimality than along an optimal path. We also find that for this non-omniscient and politically constrained actor the most desirable of the feasible courses of actions depends strongly on which model is most uncertain. When we consider uncertainty in the growth rate of the economy or in the cost of abatement, a gradual ramp-up is preferred to a steep (‘Stern-like’) abatement schedule. This result is extremely robust to the choice of a number of non-expected-utility-maximization decisional criteria that do not make use of probabilities: minimax, maximax and maximin all give the same recommendation. Ambiguity aversion does not change these results. However, when even a small uncertainty in the damage function is considered, a steeper abatement schedule becomes a strong contender, and is preferred by some decisional criteria. Furthermore, the ‘cross-over point’ for the damage exponent (the point, that is, above which an aggressive abatement schedule becomes preferred) is very close to the DICE value. This suggests that researching this aspect of climate modelling would have the greatest policy relevance. Finally, we note that a gradual (‘Nordhaus-like’) ramp-up of the abatement efforts abatement schedule is always preferred to a slower (‘business-as-usual’) schedule of abatement even in the case of much stronger future economic growth or much milder climate damage than the central estimates of the DICE model.

Suggested Citation

  • Riccardo Rebonato & Riccardo Ronzani & Lionel Melin, 2023. "Robust management of climate risk damages," Risk Management, Palgrave Macmillan, vol. 25(3), pages 1-43, September.
  • Handle: RePEc:pal:risman:v:25:y:2023:i:3:d:10.1057_s41283-023-00119-z
    DOI: 10.1057/s41283-023-00119-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41283-023-00119-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41283-023-00119-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert J. Gordon, 2016. "Perspectives on The Rise and Fall of American Growth," American Economic Review, American Economic Association, vol. 106(5), pages 72-76, May.
    2. Gollier, Christian, 2002. "Discounting an uncertain future," Journal of Public Economics, Elsevier, vol. 85(2), pages 149-166, August.
    3. William Nordhaus, 2018. "Projections and Uncertainties about Climate Change in an Era of Minimal Climate Policies," American Economic Journal: Economic Policy, American Economic Association, vol. 10(3), pages 333-360, August.
    4. Derek Lemoine & Christian Traeger, 2014. "Watch Your Step: Optimal Policy in a Tipping Climate," American Economic Journal: Economic Policy, American Economic Association, vol. 6(1), pages 137-166, February.
    5. Simon Dietz & Chris Hope & Nicholas Stern & Dimitri Zenghelis, 2007. "REFLECTIONS ON THE STERN REVIEW (1) A Robust Case for Strong Action to Reduce the Risks of Climate Change," World Economics, World Economics, 1 Ivory Square, Plantation Wharf, London, United Kingdom, SW11 3UE, vol. 8(1), pages 121-168, January.
    6. William R. Cline, 1992. "Economics of Global Warming, The," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 39, October.
    7. Ujjayant Chakravorty & Michel Moreaux & Mabel Tidball, 2008. "Ordering the Extraction of Polluting Nonrenewable Resources," American Economic Review, American Economic Association, vol. 98(3), pages 1128-1144, June.
    8. Nengjiu Ju & Jianjun Miao, 2012. "Ambiguity, Learning, and Asset Returns," Econometrica, Econometric Society, vol. 80(2), pages 559-591, March.
    9. Gollier, Christian, 2004. "Maximizing the expected net future value as an alternative strategy to gamma discounting," Finance Research Letters, Elsevier, vol. 1(2), pages 85-89, June.
    10. Robert S. Pindyck, 2013. "Climate Change Policy: What Do the Models Tell Us?," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 860-872, September.
    11. Gollier, Christian & Weitzman, Martin L., 2010. "How should the distant future be discounted when discount rates are uncertain?," Economics Letters, Elsevier, vol. 107(3), pages 350-353, June.
    12. Junichi Fujino, Rajesh Nair, Mikiko Kainuma, Toshihiko Masui and Yuzuru Matsuoka, 2006. "Multi-gas Mitigation Analysis on Stabilization Scenarios Using Aim Global Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 343-354.
    13. Lemoine, Derek & Traeger, Christian P., 2016. "Ambiguous tipping points," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 5-18.
    14. Young Eun Kim & Norman V. Loayza, 2019. "Productivity Growth: Patterns and Determinants across the World," Revista Economía, Fondo Editorial - Pontificia Universidad Católica del Perú, vol. 42(84), pages 36-93.
    15. Yongyang Cai & Thomas S. Lontzek, 2019. "The Social Cost of Carbon with Economic and Climate Risks," Journal of Political Economy, University of Chicago Press, vol. 127(6), pages 2684-2734.
    16. Richard T. Woodward & Richard C. Bishop, 1997. "How to Decide When Experts Disagree: Uncertainty-Based Choice Rules in Environmental Policy," Land Economics, University of Wisconsin Press, vol. 73(4), pages 492-507.
    17. Partha Dasgupta, 2008. "Discounting climate change," Journal of Risk and Uncertainty, Springer, vol. 37(2), pages 141-169, December.
    18. David Anthoff & Francisco Estrada & Richard S. J. Tol, 2016. "Shutting Down the Thermohaline Circulation," American Economic Review, American Economic Association, vol. 106(5), pages 602-606, May.
    19. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    20. Geoffrey Heal & Antony Millner, 2013. "Uncertainty and Decision in Climate Change Economics," NBER Working Papers 18929, National Bureau of Economic Research, Inc.
    21. Antony Millner & Simon Dietz & Geoffrey Heal, 2013. "Scientific Ambiguity and Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(1), pages 21-46, May.
    22. Mohammad R. Jahan-Parvar & Hening Liu, 2014. "Ambiguity Aversion and Asset Prices in Production Economies," Review of Financial Studies, Society for Financial Studies, vol. 27(10), pages 3060-3097.
    23. Peter Klibanoff & Massimo Marinacci & Sujoy Mukerji, 2005. "A Smooth Model of Decision Making under Ambiguity," Econometrica, Econometric Society, vol. 73(6), pages 1849-1892, November.
    24. van der Zwaan, B. C. C. & Gerlagh, R. & G. & Klaassen & Schrattenholzer, L., 2002. "Endogenous technological change in climate change modelling," Energy Economics, Elsevier, vol. 24(1), pages 1-19, January.
    25. Yongyang Cai & Timothy M. Lenton & Thomas S. Lontzek, 2016. "Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction," Nature Climate Change, Nature, vol. 6(5), pages 520-525, May.
    26. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39, pages 137-137.
    27. Michael Barnett & William Brock & Lars Peter Hansen & Harrison Hong, 2020. "Pricing Uncertainty Induced by Climate Change," Review of Financial Studies, Society for Financial Studies, vol. 33(3), pages 1024-1066.
    28. Frank Ackerman & Elizabeth Stanton & Ramón Bueno, 2013. "Epstein–Zin Utility in DICE: Is Risk Aversion Irrelevant to Climate Policy?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(1), pages 73-84, September.
    29. Jensen, Svenn & Traeger, Christian P., 2014. "Optimal climate change mitigation under long-term growth uncertainty: Stochastic integrated assessment and analytic findings," European Economic Review, Elsevier, vol. 69(C), pages 104-125.
    30. Weitzman, Martin L., 1998. "Why the Far-Distant Future Should Be Discounted at Its Lowest Possible Rate," Journal of Environmental Economics and Management, Elsevier, vol. 36(3), pages 201-208, November.
    31. William D. Nordhaus & Andrew Moffat, 2017. "A Survey of Global Impacts of Climate Change: Replication, Survey Methods, and a Statistical Analysis," NBER Working Papers 23646, National Bureau of Economic Research, Inc.
    32. William D. Nordhaus, 2007. "A Review of the Stern Review on the Economics of Climate Change," Journal of Economic Literature, American Economic Association, vol. 45(3), pages 686-702, September.
    33. Steven J. Smith and T.M.L. Wigley, 2006. "Multi-Gas Forcing Stabilization with Minicam," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 373-392.
    34. David Anthoff & Francisco Estrada & Richard S. J. Tol, 2016. "Shutting Down the Thermohaline Circulation," American Economic Review, American Economic Association, vol. 106(5), pages 602-06, May.
    35. Hambel, Christoph & Kraft, Holger & Schwartz, Eduardo, 2021. "Optimal carbon abatement in a stochastic equilibrium model with climate change," European Economic Review, Elsevier, vol. 132(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    2. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    3. Kent D. Daniel & Robert B. Litterman & Gernot Wagner, 2016. "Applying Asset Pricing Theory to Calibrate the Price of Climate Risk," NBER Working Papers 22795, National Bureau of Economic Research, Inc.
    4. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    5. Richard S. J. Tol, 2021. "Estimates of the social cost of carbon have increased over time," Papers 2105.03656, arXiv.org, revised Aug 2022.
    6. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    7. Rick van der Ploeg, 2020. "Discounting and Climate Policy," CESifo Working Paper Series 8441, CESifo.
    8. Olijslagers, Stan & van der Ploeg, Frederick & van Wijnbergen, Sweder, 2023. "On current and future carbon prices in a risky world," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    9. W. Botzen & Jeroen Bergh, 2014. "Specifications of Social Welfare in Economic Studies of Climate Policy: Overview of Criteria and Related Policy Insights," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 1-33, May.
    10. Buchholz Wolfgang & Heindl Peter, 2015. "Ökonomische Herausforderungen des Klimawandels," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 16(4), pages 324-350, December.
    11. Hjort, Ingrid, 2016. "Potential Climate Risks in Financial Markets: A Literature Overview," Memorandum 01/2016, Oslo University, Department of Economics.
    12. Fleurbaey, Marc & Zuber, Stéphane, 2015. "Discounting, risk and inequality: A general approach," Journal of Public Economics, Elsevier, vol. 128(C), pages 34-49.
    13. Peter von zur Muehlen, 2022. "Prices and Taxes in a Ramsey Climate Policy Model under Heterogeneous Beliefs and Ambiguity," Economies, MDPI, vol. 10(10), pages 1-56, October.
    14. Lars Peter Hansen, 2021. "Uncertainty Spillovers for Markets and Policy," Annual Review of Economics, Annual Reviews, vol. 13(1), pages 371-396, August.
    15. Stephen Keen & Timothy M. Lenton & Antoine Godin & Devrim Yilmaz & Matheus Grasselli & Timothy J. Garrett, 2021. "Economists' erroneous estimates of damages from climate change," Papers 2108.07847, arXiv.org.
    16. Moritz A. Drupp & Martin C. Hänsel, 2021. "Relative Prices and Climate Policy: How the Scarcity of Nonmarket Goods Drives Policy Evaluation," American Economic Journal: Economic Policy, American Economic Association, vol. 13(1), pages 168-201, February.
    17. Christian Traeger, 2014. "Why uncertainty matters: discounting under intertemporal risk aversion and ambiguity," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(3), pages 627-664, August.
    18. Cameron Hepburn & Greer Gosnell, 2014. "Evaluating impacts in the distant future: cost–benefit analysis, discounting and the alternatives," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 9, pages 140-159, Edward Elgar Publishing.
    19. Mariia Belaia & Michael Funke & Nicole Glanemann, 2017. "Global Warming and a Potential Tipping Point in the Atlantic Thermohaline Circulation: The Role of Risk Aversion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(1), pages 93-125, May.
    20. Nicolas Taconet & Céline Guivarch & Antonin Pottier, 2021. "Social Cost of Carbon Under Stochastic Tipping Points," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(4), pages 709-737, April.

    More about this item

    Keywords

    DSGE models; Integrated Assessment Models; Decisional criteria; Optimal policy;
    All these keywords.

    JEL classification:

    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:risman:v:25:y:2023:i:3:d:10.1057_s41283-023-00119-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.