IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v56y2013i1p73-84.html
   My bibliography  Save this article

Epstein–Zin Utility in DICE: Is Risk Aversion Irrelevant to Climate Policy?

Author

Listed:
  • Frank Ackerman
  • Elizabeth Stanton
  • Ramón Bueno

Abstract

Climate change involves uncertain probabilities of catastrophic risks, and very longterm consequences of current actions. Climate economics, therefore, is centrally concerned with the treatment of risk and time. Yet conventional assumptions about utility and optimal economic growth create a perverse connection between risk aversion and time preference, such that more aversion to current risks implies less concern for future outcomes, and vice versa. The same conflation of risk aversion and time preference leads to the equity premium puzzle in finance. A promising response to the equity premium puzzle, the recursive utility of Epstein and Zin, allows separation of risk aversion and time preference—at the cost of considerable analytic complexity. We introduce an accessible implementation of Epstein–Zin utility into the DICE model of climate economics, creating a hybrid “EZ-DICE” model. Using Epstein–Zin parameters from the finance literature and climate uncertainty parameters from the science literature, we find that the optimal climate policy in EZ-DICE calls for rapid abatement of carbon emissions; it is similar to standard DICE results with the discount rate set to equal the risk-free rate of return. EZ-DICE solutions are sensitive to the intertemporal elasticity of substitution, but remarkably insensitive to risk aversion. Insensitivity to risk aversion may reflect the difficulty of modeling catastrophic risks within DICE. Implicit in DICE are strong assumptions about the cost of climate stabilization and the certainty and speed of success; under these assumptions, risk aversion would in fact be unimportant. A more realistic analysis will require a subtler treatment of catastrophic climate risk. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Frank Ackerman & Elizabeth Stanton & Ramón Bueno, 2013. "Epstein–Zin Utility in DICE: Is Risk Aversion Irrelevant to Climate Policy?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(1), pages 73-84, September.
  • Handle: RePEc:kap:enreec:v:56:y:2013:i:1:p:73-84
    DOI: 10.1007/s10640-013-9645-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10640-013-9645-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10640-013-9645-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Minh Ha-Duong & Nicolas Treich, 2004. "Risk Aversion, Intergenerational Equity and Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(2), pages 195-207, June.
    2. William R. Cline, 1992. "Economics of Global Warming, The," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 39.
    3. Larry G. Epstein & Stanley E. Zin, 2013. "Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 12, pages 207-239, World Scientific Publishing Co. Pte. Ltd..
    4. Minh Ha-Duong & Nicolas Treich, 2004. "Risk Aversion, Intergenerational Equity and Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(2), pages 195-207, June.
    5. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    6. Ackerman, Frank & Stanton, Elizabeth A., 2012. "Climate risks and carbon prices: Revising the social cost of carbon," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-25.
    7. Epstein, Larry G & Zin, Stanley E, 1991. "Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: An Empirical Analysis," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 263-286, April.
    8. Matthew Rabin, 2000. "Risk Aversion and Expected-Utility Theory: A Calibration Theorem," Econometrica, Econometric Society, vol. 68(5), pages 1281-1292, September.
    9. Buchholz, Wolfgang & Schymura, Michael, 2012. "Expected utility theory and the tyranny of catastrophic risks," Ecological Economics, Elsevier, vol. 77(C), pages 234-239.
    10. Mehra, Rajnish & Prescott, Edward C., 1985. "The equity premium: A puzzle," Journal of Monetary Economics, Elsevier, vol. 15(2), pages 145-161, March.
    11. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    12. Crost, Benjamin & Traeger, Christian P., 2010. "Risk and Aversion in the Integrated Assessment of Climate Change," CUDARE Working Papers 90935, University of California, Berkeley, Department of Agricultural and Resource Economics.
    13. Helgeson, Jennifer & Dietz, Simon & Atkinson, Giles D. & Hepburn, Cameron & Sælen, Håkon, 2009. "Siblings, not triplets: social preferences for risk, inequality and time in discounting climate change," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-28.
    14. David Cass, 1965. "Optimum Growth in an Aggregative Model of Capital Accumulation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 32(3), pages 233-240.
    15. Ravi Bansal & Amir Yaron, 2004. "Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles," Journal of Finance, American Finance Association, vol. 59(4), pages 1481-1509, August.
    16. Richard B. Howarth, 2003. "Discounting and Uncertainty in Climate Change Policy Analysis," Land Economics, University of Wisconsin Press, vol. 79(3), pages 369-381.
    17. Noah Kaufman, 2012. "The bias of integrated assessment models that ignore climate catastrophes," Climatic Change, Springer, vol. 110(3), pages 575-595, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariia Belaia & Michael Funke & Nicole Glanemann, 2017. "Global Warming and a Potential Tipping Point in the Atlantic Thermohaline Circulation: The Role of Risk Aversion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(1), pages 93-125, May.
    2. Kent D. Daniel & Robert B. Litterman & Gernot Wagner, 2016. "Applying Asset Pricing Theory to Calibrate the Price of Climate Risk," NBER Working Papers 22795, National Bureau of Economic Research, Inc.
    3. Berger, Loïc & Emmerling, Johannes, 2017. "Welfare as Simple(x) Equity Equivalents," MITP: Mitigation, Innovation and Transformation Pathways 254044, Fondazione Eni Enrico Mattei (FEEM).
    4. W. Botzen & Jeroen Bergh, 2014. "Specifications of Social Welfare in Economic Studies of Climate Policy: Overview of Criteria and Related Policy Insights," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 1-33, May.
    5. Liu, Liqun, 2012. "Inferring the rate of pure time preference under uncertainty," Ecological Economics, Elsevier, vol. 74(C), pages 27-33.
    6. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    7. Nordhaus, William, 2013. "Integrated Economic and Climate Modeling," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1069-1131, Elsevier.
    8. Kopp, Robert E. & Mignone, Bryan K., 2012. "The US government's social cost of carbon estimates after their first two years: Pathways for improvement," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-41.
    9. P. Ding & M. D. Gerst & A. Bernstein & R. B. Howarth & M. E. Borsuk, 2012. "Rare Disasters and Risk Attitudes: International Differences and Implications for Integrated Assessment Modeling," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1846-1855, November.
    10. Thomas S. Lontzek & Daiju Narita & Ole Wilms, 2016. "Stochastic Integrated Assessment of Ecosystem Tipping Risk," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 573-598, November.
    11. Svenja Hector, 2013. "Accounting for Different Uncertainties: Implications for Climate Investments?," Working Papers 2013.107, Fondazione Eni Enrico Mattei.
    12. Yongyang Cai & Kenneth L. Judd & Thomas S. Lontzek, 2013. "The Social Cost of Stochastic and Irreversible Climate Change," NBER Working Papers 18704, National Bureau of Economic Research, Inc.
    13. Svenja Hector(), "undated". "Accounting for Different Uncertainties: Implications for Climate Investments?," Working Papers ETH-RC-13-007, ETH Zurich, Chair of Systems Design.
    14. Olijslagers, Stan & van der Ploeg, Frederick & van Wijnbergen, Sweder, 2023. "On current and future carbon prices in a risky world," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    15. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    16. Samuel Jovan Okullo, 2020. "Determining the Social Cost of Carbon: Under Damage and Climate Sensitivity Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(1), pages 79-103, January.
    17. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    18. Noah Kaufman, 2012. "The bias of integrated assessment models that ignore climate catastrophes," Climatic Change, Springer, vol. 110(3), pages 575-595, February.
    19. Robert J. Barro, 2015. "Environmental Protection, Rare Disasters and Discount Rates," Economica, London School of Economics and Political Science, vol. 82(325), pages 1-23, January.
    20. Mu Zhang, 2021. "A Theory of Choice Bracketing under Risk," Papers 2102.07286, arXiv.org, revised Aug 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:56:y:2013:i:1:p:73-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.