IDEAS home Printed from https://ideas.repec.org/a/aea/aejpol/v10y2018i3p333-60.html
   My bibliography  Save this article

Projections and Uncertainties about Climate Change in an Era of Minimal Climate Policies

Author

Listed:
  • William Nordhaus

Abstract

Climate change remains one of the major international environmental challenges facing nations. Up to now, nations have adopted minimal policies to slow climate change. Moreover, there has been no major improvement in emissions trends as of the latest data. The current study uses the updated DICE model to develop new projections of trends and impacts of alternative climate policies. It also presents a new set of estimates of the uncertainties about future climate change and compares the results with those of other integrated assessment models. The study confirms past estimates of likely rapid climate change over the next century if major climate-change policies are not taken. It suggests that it is unlikely that nations can achieve the 2°C target of international agreements, even if ambitious policies are introduced in the near term. The required carbon price needed to achieve current targets has risen over time as policies have been delayed.

Suggested Citation

  • William Nordhaus, 2018. "Projections and Uncertainties about Climate Change in an Era of Minimal Climate Policies," American Economic Journal: Economic Policy, American Economic Association, vol. 10(3), pages 333-360, August.
  • Handle: RePEc:aea:aejpol:v:10:y:2018:i:3:p:333-60
    Note: DOI: 10.1257/pol.20170046
    as

    Download full text from publisher

    File URL: https://www.aeaweb.org/doi/10.1257/pol.20170046
    Download Restriction: no

    File URL: https://www.aeaweb.org/articles/attachments?retrieve=SLvpU1bAPo2yXjR--D6dp_OCJYWhUz7I
    Download Restriction: no

    File URL: https://www.aeaweb.org/articles/attachments?retrieve=807peNFh5G9l4azQy-zL-x2FSOH0Dc0J
    Download Restriction: no

    File URL: https://www.aeaweb.org/articles/attachments?retrieve=lDOH-YcGYXz_pibDuymVen8zH9i4X_m4
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kenneth Gillingham & William D. Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewon McJeon & John Reilly & Paul Sztorc, 2015. "Modeling Uncertainty in Climate Change: A Multi-Model Comparison," NBER Working Papers 21637, National Bureau of Economic Research, Inc.
    2. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    3. Richard S. J. Tol, 2009. "The Economic Effects of Climate Change," Journal of Economic Perspectives, American Economic Association, vol. 23(2), pages 29-51, Spring.
    4. William Nordhaus, 2014. "Estimates of the Social Cost of Carbon: Concepts and Results from the DICE-2013R Model and Alternative Approaches," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(1), pages 000.
    5. Nordhaus, William D., 1993. "Rolling the 'DICE': an optimal transition path for controlling greenhouse gases," Resource and Energy Economics, Elsevier, vol. 15(1), pages 27-50, March.
    6. William Nordhaus, 2015. "Climate Clubs: Overcoming Free-Riding in International Climate Policy," American Economic Review, American Economic Association, vol. 105(4), pages 1339-1370, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2018. "Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model," Ecological Economics, Elsevier, vol. 150(C), pages 315-339.
    2. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    3. repec:hal:spmain:info:hdl:2441/4hs7liq1f49gh9chdf7r17gam6 is not listed on IDEAS
    4. Richard S. J. Tol, 2021. "Estimates of the social cost of carbon have increased over time," Papers 2105.03656, arXiv.org, revised Aug 2022.
    5. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    6. William Nordhaus, 2018. "Evolution of modeling of the economics of global warming: changes in the DICE model, 1992–2017," Climatic Change, Springer, vol. 148(4), pages 623-640, June.
    7. Frederick Ploeg & Armon Rezai, 2019. "Simple Rules for Climate Policy and Integrated Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 77-108, January.
    8. Giudice, Renzo & Börner, Jan, 2021. "Benefits and costs of incentive-based forest conservation in the Peruvian Amazon," Forest Policy and Economics, Elsevier, vol. 131(C).
    9. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    10. Weyant John, 2014. "Integrated assessment of climate change: state of the literature," Journal of Benefit-Cost Analysis, De Gruyter, vol. 5(3), pages 377-409, December.
    11. Tol, Richard S.J., 2013. "Targets for global climate policy: An overview," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 911-928.
    12. Jussi Lintunen & Lauri Vilmi, 2021. "Optimal Emission Prices Over the Business Cycles," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(1), pages 135-167, September.
    13. S. Niggol Seo, 2015. "Adaptation to Global Warming as an Optimal Transition Process to A Greenhouse World," Economic Affairs, Wiley Blackwell, vol. 35(2), pages 272-284, June.
    14. Zhang, Hong & Jin, Gui & Zhang, Zhengyu, 2021. "Coupling system of carbon emission and social economy: A review," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    15. Tamaki, Tetsuya & Nozawa, Wataru & Managi, Shunsuke, 2017. "Evaluation of the ocean ecosystem: Climate change modelling with backstop technologies," Applied Energy, Elsevier, vol. 205(C), pages 428-439.
    16. William D. Nordhaus, 2017. "Evolution of Assessments of the Economics of Global Warming: Changes in the DICE model, 1992 – 2017," NBER Working Papers 23319, National Bureau of Economic Research, Inc.
    17. Vermeulen, Robert & Schets, Edo & Lohuis, Melanie & Kölbl, Barbara & Jansen, David-Jan & Heeringa, Willem, 2021. "The heat is on: A framework for measuring financial stress under disruptive energy transition scenarios," Ecological Economics, Elsevier, vol. 190(C).
    18. Cai, Yongyang & Brock, William & Xepapadeas, Anastasios, 2016. "Climate Change Economics and Heat Transport across the Globe: Spatial-DSICE," 2017 Allied Social Sciences Association (ASSA) Annual Meeting, January 6-8, 2017, Chicago, Illinois 251833, Agricultural and Applied Economics Association.
    19. Sigit Perdana and Rod Tyers, 2020. "Global Climate Change Mitigation: Strategic Incentives," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 183-206.
    20. Gerlagh, Reyer & Jaimes, Richard & Motavasseli, Ali, 2017. "Global Demographic Change and Climate Policies," Other publications TiSEM 7a4ee2a9-e025-4ec0-8bc8-f, Tilburg University, School of Economics and Management.
    21. Sareh Vosooghi & Maria Arvaniti & Rick van der Ploeg, 2022. "Self-Enforcing Climate Coalitions for Farsighted Countries: Integrated Analysis of Heterogeneous Countries," CESifo Working Paper Series 9768, CESifo.

    More about this item

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:aejpol:v:10:y:2018:i:3:p:333-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.