IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i11p891-d81722.html
   My bibliography  Save this article

Economic Growth, Electricity Consumption, Labor Force and Capital Input: A More Comprehensive Analysis on North China Using Panel Data

Author

Listed:
  • Huiru Zhao

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Haoran Zhao

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Xiaoyu Han

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Zhonghua He

    (North China Grid Company Limited, Beijing Xuanwu District No. 482 Canton Avenue, Beijing 100053, China)

  • Sen Guo

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

Abstract

Over the past three decades, China’s economy has witnessed remarkable growth, with an average annual growth rate over 9%. However, China also faces great challenges to balance this spectacular economic growth and continuously increasing energy use like many other economies in the world. With the aim of designing effective energy and environmental policies, policymakers are required to master the relationship between energy consumption and economic growth. Therefore, in the case of North China, a multivariate model employing panel data analysis method based on the Cobb-Douglas production function which introduces electricity consumption as a main factor was established in this paper. The equilibrium relationship and causal relationship between real GDP, electricity consumption, total investment in fixed assets, and the employment were explored using data during the period of 1995–2014 for six provinces in North China, including Beijing City, Tianjin City, Hebei Province, Shanxi Province, Shandong Province and Inner Mongolia. The results of panel co-integration tests clearly state that all variables are co-integrated in the long term. Finally, Granger causality tests were used to examine the causal relationship between economic growth, electricity consumption, labor force and capital. From the Granger causality test results, we can draw the conclusions that: (1) There exist bi-directional causal relationships between electricity consumption and real GDP in six provinces except Hebei; and (2) there is a bi-directional relationship between capital input and economic growth and between labor force input and economic growth except Beijing and Hebei. Therefore, the ways to solve the contradiction of economic growth and energy consumption in North China are to reduce fossil energy consumption, develop renewable and sustainable energy sources, improve energy efficiency, and increase the proportion of the third industry, especially the sectors which hold the characteristics of low energy consumption and high value-added.

Suggested Citation

  • Huiru Zhao & Haoran Zhao & Xiaoyu Han & Zhonghua He & Sen Guo, 2016. "Economic Growth, Electricity Consumption, Labor Force and Capital Input: A More Comprehensive Analysis on North China Using Panel Data," Energies, MDPI, vol. 9(11), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:891-:d:81722
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/11/891/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/11/891/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ozturk, Ilhan & Aslan, Alper & Kalyoncu, Huseyin, 2010. "Energy consumption and economic growth relationship: Evidence from panel data for low and middle income countries," Energy Policy, Elsevier, vol. 38(8), pages 4422-4428, August.
    2. Karanfil, Fatih, 2008. "Energy consumption and economic growth revisited: Does the size of unrecorded economy matter?," Energy Policy, Elsevier, vol. 36(8), pages 3019-3025, August.
    3. Karanfil, Fatih & Li, Yuanjing, 2015. "Electricity consumption and economic growth: Exploring panel-specific differences," Energy Policy, Elsevier, vol. 82(C), pages 264-277.
    4. Narayan, Paresh Kumar & Smyth, Russell, 2008. "Energy consumption and real GDP in G7 countries: New evidence from panel cointegration with structural breaks," Energy Economics, Elsevier, vol. 30(5), pages 2331-2341, September.
    5. Mehrara, Mohsen, 2007. "Energy consumption and economic growth: The case of oil exporting countries," Energy Policy, Elsevier, vol. 35(5), pages 2939-2945, May.
    6. Ghosh, Sajal & Kanjilal, Kakali, 2014. "Long-term equilibrium relationship between urbanization, energy consumption and economic activity: Empirical evidence from India," Energy, Elsevier, vol. 66(C), pages 324-331.
    7. Pedroni, Peter, 2004. "Panel Cointegration: Asymptotic And Finite Sample Properties Of Pooled Time Series Tests With An Application To The Ppp Hypothesis," Econometric Theory, Cambridge University Press, vol. 20(3), pages 597-625, June.
    8. Kaddour Hadri, 2000. "Testing for stationarity in heterogeneous panel data," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 148-161.
    9. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    10. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    11. Stephan B. Bruns, Christian Gross and David I. Stern, 2014. "Is There Really Granger Causality Between Energy Use and Output?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    12. Asafu-Adjaye, John, 2000. "The relationship between energy consumption, energy prices and economic growth: time series evidence from Asian developing countries," Energy Economics, Elsevier, vol. 22(6), pages 615-625, December.
    13. Salahuddin, Mohammad & Gow, Jeff & Ozturk, Ilhan, 2015. "Is the long-run relationship between economic growth, electricity consumption, carbon dioxide emissions and financial development in Gulf Cooperation Council Countries robust?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 317-326.
    14. Huang, Bwo-Nung & Hwang, M.J. & Yang, C.W., 2008. "Causal relationship between energy consumption and GDP growth revisited: A dynamic panel data approach," Ecological Economics, Elsevier, vol. 67(1), pages 41-54, August.
    15. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    16. Ghali, Khalifa H. & El-Sakka, M. I. T., 2004. "Energy use and output growth in Canada: a multivariate cointegration analysis," Energy Economics, Elsevier, vol. 26(2), pages 225-238, March.
    17. Lee, Chien-Chiang & Chang, Chun-Ping, 2008. "Energy consumption and economic growth in Asian economies: A more comprehensive analysis using panel data," Resource and Energy Economics, Elsevier, vol. 30(1), pages 50-65, January.
    18. Breitung, Jörg, 1999. "The local power of some unit root tests for panel data," SFB 373 Discussion Papers 1999,69, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    19. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    20. Wang, Yuan & Wang, Yichen & Zhou, Jing & Zhu, Xiaodong & Lu, Genfa, 2011. "Energy consumption and economic growth in China: A multivariate causality test," Energy Policy, Elsevier, vol. 39(7), pages 4399-4406, July.
    21. Peter Pedroni, 1999. "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 653-670, November.
    22. Soytas, Ugur & Sari, Ramazan, 2007. "The relationship between energy and production: Evidence from Turkish manufacturing industry," Energy Economics, Elsevier, vol. 29(6), pages 1151-1165, November.
    23. Narayan, Paresh Kumar & Popp, Stephan, 2012. "The energy consumption-real GDP nexus revisited: Empirical evidence from 93 countries," Economic Modelling, Elsevier, vol. 29(2), pages 303-308.
    24. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    25. Ewing, Bradley T. & Payne, James E. & Caporin, Massimilano, 2022. "The Asymmetric Impact of Oil Prices and Production on Drilling Rig Trajectory: A correction," Resources Policy, Elsevier, vol. 79(C).
    26. Choi, In, 2001. "Unit root tests for panel data," Journal of International Money and Finance, Elsevier, vol. 20(2), pages 249-272, April.
    27. Lee, Chien-Chiang & Chang, Chun-Ping, 2007. "Energy consumption and GDP revisited: A panel analysis of developed and developing countries," Energy Economics, Elsevier, vol. 29(6), pages 1206-1223, November.
    28. Al-mulali, Usama & Lee, Janice YM & Hakim Mohammed, Abdul & Sheau-Ting, Low, 2013. "Examining the link between energy consumption, carbon dioxide emission, and economic growth in Latin America and the Caribbean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 42-48.
    29. Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2015. "Productive energy use and economic growth: Energy, physical and human capital relationships," Energy Economics, Elsevier, vol. 49(C), pages 420-429.
    30. Stern, David I., 1993. "Energy and economic growth in the USA : A multivariate approach," Energy Economics, Elsevier, vol. 15(2), pages 137-150, April.
    31. Lee, Chien-Chiang & Chien, Mei-Se, 2010. "Dynamic modelling of energy consumption, capital stock, and real income in G-7 countries," Energy Economics, Elsevier, vol. 32(3), pages 564-581, May.
    32. Soytas, Ugur & Sari, Ramazan, 2006. "Can China contribute more to the fight against global warming?," Journal of Policy Modeling, Elsevier, vol. 28(8), pages 837-846, November.
    33. Bowden, Nicholas & Payne, James E., 2009. "The causal relationship between U.S. energy consumption and real output: A disaggregated analysis," Journal of Policy Modeling, Elsevier, vol. 31(2), pages 180-188.
    34. Al-Iriani, Mahmoud A., 2006. "Energy-GDP relationship revisited: An example from GCC countries using panel causality," Energy Policy, Elsevier, vol. 34(17), pages 3342-3350, November.
    35. Josep Lluís Carrion-i-Silvestre & Tomás del Barrio-Castro & Enrique López-Bazo, 2005. "Breaking the panels: An application to the GDP per capita," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 159-175, July.
    36. Stern, David I., 2000. "A multivariate cointegration analysis of the role of energy in the US macroeconomy," Energy Economics, Elsevier, vol. 22(2), pages 267-283, April.
    37. Baranzini, Andrea & Weber, Sylvain & Bareit, Markus & Mathys, Nicole A., 2013. "The causal relationship between energy use and economic growth in Switzerland," Energy Economics, Elsevier, vol. 36(C), pages 464-470.
    38. Oh, Wankeun & Lee, Kihoon, 2004. "Energy consumption and economic growth in Korea: testing the causality relation," Journal of Policy Modeling, Elsevier, vol. 26(8-9), pages 973-981, December.
    39. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    40. Lee, Chien-Chiang & Chang, Chun-Ping & Chen, Pei-Fen, 2008. "Energy-income causality in OECD countries revisited: The key role of capital stock," Energy Economics, Elsevier, vol. 30(5), pages 2359-2373, September.
    41. Feng, Taiwen & Sun, Linyan & Zhang, Ying, 2009. "The relationship between energy consumption structure, economic structure and energy intensity in China," Energy Policy, Elsevier, vol. 37(12), pages 5475-5483, December.
    42. Oh, Wankeun & Lee, Kihoon, 2004. "Causal relationship between energy consumption and GDP revisited: the case of Korea 1970-1999," Energy Economics, Elsevier, vol. 26(1), pages 51-59, January.
    43. Soytas, Ugur & Sari, Ramazan & Ewing, Bradley T., 2007. "Energy consumption, income, and carbon emissions in the United States," Ecological Economics, Elsevier, vol. 62(3-4), pages 482-489, May.
    44. Pedroni, Peter, 1999. "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(0), pages 653-670, Special I.
    45. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yugang He & Chunlei Wang, 2022. "Does Buddhist Tourism Successfully Result in Local Sustainable Development?," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    2. Hamizah Abdul Halim & Nor Hidayah Harun & Mohd Shahidan Shaari & Noorazeela Zainol Abidin, 2020. "The Effects of Capital, Labor and Electricity Consumption on Economic Growth in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 305-309.
    3. Usman Mehmood & Salman Tariq & Zia Ul-Haq & Ephraim Bonah Agyekum & Salah Kamel & Mohamed Elnaggar & Hasan Nawaz & Ammar Hameed & Shafqat Ali, 2022. "Can Financial Institutional Deepening and Renewable Energy Consumption Lower CO 2 Emissions in G-10 Countries: Fresh Evidence from Advanced Methodologies," IJERPH, MDPI, vol. 19(9), pages 1-18, May.
    4. Batrancea Ioan & Rathnaswamy Malar Kumaran & Batrancea Larissa & Nichita Anca & Gaban Lucian & Fatacean Gheorghe & Tulai Horia & Bircea Ioan & Rus Mircea-Iosif, 2020. "A Panel Data Analysis on Sustainable Economic Growth in India, Brazil, and Romania," JRFM, MDPI, vol. 13(8), pages 1-19, August.
    5. Yidan Liang, 2023. "Capital and labour distortion in China: a systematic literature review using HistCite," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(2), pages 1759-1784, June.
    6. Tomas Baležentis & Dalia Štreimikienė, 2019. "Sustainability in the Electricity Sector through Advanced Technologies: Energy Mix Transition and Smart Grid Technology in China," Energies, MDPI, vol. 12(6), pages 1-21, March.
    7. Hongze Li & Fengyun Li & Di Shi & Xinhua Yu & Jianfei Shen, 2018. "Carbon Emission Intensity, Economic Development and Energy Factors in 19 G20 Countries: Empirical Analysis Based on a Heterogeneous Panel from 1990 to 2015," Sustainability, MDPI, vol. 10(7), pages 1-26, July.
    8. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Characterizing the Influences of Economic Development, Energy Consumption, Urbanization, Industrialization, and Vehicles Amount on PM 2.5 Concentrations of China," Sustainability, MDPI, vol. 10(7), pages 1-19, July.
    9. Yidan Liang, 2023. "The effect of capital and labour distortion on innovation," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(2), pages 1709-1737, June.
    10. Anam Azam & Muhammad Rafiq & Muhammad Shafique & Muhammad Ateeq & Jiahai Yuan, 2020. "Causality Relationship Between Electricity Supply and Economic Growth: Evidence from Pakistan," Energies, MDPI, vol. 13(4), pages 1-20, February.
    11. Salmanzadeh-Meydani, N. & Fatemi Ghomi, S.M.T., 2019. "The causal relationship among electricity consumption, economic growth and capital stock in Iran," Journal of Policy Modeling, Elsevier, vol. 41(6), pages 1230-1256.
    12. Julián Pérez-García & Julián Moral-Carcedo, 2017. "Why Electricity Demand Is Highly Income-Elastic in Spain: A Cross-Country Comparison Based on an Index-Decomposition Analysis," Energies, MDPI, vol. 10(3), pages 1-20, March.
    13. Pruethsan Sutthichaimethee & Danupon Ariyasajjakorn, 2018. "Relationships between Causal Factors Affecting Future Carbon Dioxide Output from Thailand’s Transportation Sector under the Government’s Sustainability Policy: Expanding the SEM-VECM Model," Resources, MDPI, vol. 7(4), pages 1-18, December.
    14. Liu, Wenfeng & Zhang, Xingping & Feng, Sida, 2019. "Does renewable energy policy work? Evidence from a panel data analysis," Renewable Energy, Elsevier, vol. 135(C), pages 635-642.
    15. Pruethsan Sutthichaimethee & Boonton Dockthaisong, 2018. "A Relationship of Causal Factors in the Economic, Social, and Environmental Aspects Affecting the Implementation of Sustainability Policy in Thailand: Enriching the Path Analysis Based on a GMM Model," Resources, MDPI, vol. 7(4), pages 1-26, December.
    16. Merlin, Matumona Lubabu & Chen, Yinfei, 2021. "Analysis of the factors affecting electricity consumption in DR Congo using fully modified ordinary least square (FMOLS), dynamic ordinary least square (DOLS) and canonical cointegrating regression (C," Energy, Elsevier, vol. 232(C).
    17. Fang, Debin & Hao, Peng & Hao, Jian, 2019. "Study of the influence mechanism of China's electricity consumption based on multi-period ST-LMDI model," Energy, Elsevier, vol. 170(C), pages 730-743.
    18. Usman Mehmood & Salman Tariq & Zia ul Haq & Ephraim Bonah Agyekum & Solomon Eghosa Uhunamure & Karabo Shale & Hasan Nawaz & Shafqat Ali & Ammar Hameed, 2022. "Financial Institutional and Market Deepening, and Environmental Quality Nexus: A Case Study in G-11 Economies Using CS-ARDL," IJERPH, MDPI, vol. 19(19), pages 1-19, September.
    19. Smita Nath, 2020. "Relationship between Economic Growth and Electricity Consumption in India: A Re-Investigation," Energy Economics Letters, Asian Economic and Social Society, vol. 7(1), pages 23-35, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ewing, Bradley T. & Payne, James E. & Caporin, Massimilano, 2022. "The Asymmetric Impact of Oil Prices and Production on Drilling Rig Trajectory: A correction," Resources Policy, Elsevier, vol. 79(C).
    2. Apergis, Nicholas & Payne, James E., 2009. "Energy consumption and economic growth: Evidence from the Commonwealth of Independent States," Energy Economics, Elsevier, vol. 31(5), pages 641-647, September.
    3. Hasanov, Fakhri & Bulut, Cihan & Suleymanov, Elchin, 2017. "Review of energy-growth nexus: A panel analysis for ten Eurasian oil exporting countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 369-386.
    4. Farhani, Sahbi & Shahbaz, Muhammad & Sbia, Rashid, 2013. "What is MENA Region Initially Needed: Grow Output or Mitigate CO2 Emissions?," MPRA Paper 48859, University Library of Munich, Germany, revised 05 Aug 2013.
    5. Dergiades, Theologos & Martinopoulos, Georgios & Tsoulfidis, Lefteris, 2013. "Energy consumption and economic growth: Parametric and non-parametric causality testing for the case of Greece," Energy Economics, Elsevier, vol. 36(C), pages 686-697.
    6. repec:ipg:wpaper:2014-529 is not listed on IDEAS
    7. Damette, Olivier & Seghir, Majda, 2013. "Energy as a driver of growth in oil exporting countries?," Energy Economics, Elsevier, vol. 37(C), pages 193-199.
    8. Belke, Ansgar & Dobnik, Frauke & Dreger, Christian, 2011. "Energy consumption and economic growth: New insights into the cointegration relationship," Energy Economics, Elsevier, vol. 33(5), pages 782-789, September.
    9. Farhani, Sahbi & Shahbaz, Muhammad & Sbia, Rashid & Chaibi, Anissa, 2014. "What does MENA region initially need: Grow output or mitigate CO2 emissions?," Economic Modelling, Elsevier, vol. 38(C), pages 270-281.
    10. Costantini, Valeria & Martini, Chiara, 2010. "The causality between energy consumption and economic growth: A multi-sectoral analysis using non-stationary cointegrated panel data," Energy Economics, Elsevier, vol. 32(3), pages 591-603, May.
    11. Frauke Dobnik, 2011. "Energy Consumption and Economic Growth Revisited: Structural Breaks and Cross-section Dependence," Ruhr Economic Papers 0303, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    12. Herrerias, M.J. & Joyeux, R. & Girardin, E., 2013. "Short- and long-run causality between energy consumption and economic growth: Evidence across regions in China," Applied Energy, Elsevier, vol. 112(C), pages 1483-1492.
    13. Dipa Adhikari & Yanying Chen, 2013. "Energy Consumption and Economic Growth: A Panel Cointegration Analysis for Developing Countries," Review of Economics & Finance, Better Advances Press, Canada, vol. 3, pages 68-80, May.
    14. Sahbi FARHANI & Jaleleddine BEN REJEB, 2015. "Link between Economic Growth and Energy Consumption in Over 90 Countries," Working Papers 2015-614, Department of Research, Ipag Business School.
    15. Irina Dolgopolova & Qazi Hye & Iyala Stewart, 2014. "Energy consumption and economic growth: evidence from non-OPEC oil producing states," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(2), pages 887-898, March.
    16. repec:zbw:rwirep:0303 is not listed on IDEAS
    17. Jalil, Abdul, 2014. "Energy–growth conundrum in energy exporting and importing countries: Evidence from heterogeneous panel methods robust to cross-sectional dependence," Energy Economics, Elsevier, vol. 44(C), pages 314-324.
    18. Saida Zaidi & Samia Gmiden & Kais Saidi, 2018. "How energy consumption affects economic development in select African countries," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 501-513, January.
    19. Dobnik, Frauke, 2011. "Energy Consumption and Economic Growth Revisited: Structural Breaks and Cross-section Dependence," Ruhr Economic Papers 303, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    20. Farzana Sharmin & Mohammed Robayet Khan & Mohammed Robayet Khan, 2016. "A Causal Relationship between Energy Consumption, Energy Prices and Economic Growth in Africa," International Journal of Energy Economics and Policy, Econjournals, vol. 6(3), pages 477-494.
    21. Ozturk, Ilhan, 2010. "A literature survey on energy-growth nexus," Energy Policy, Elsevier, vol. 38(1), pages 340-349, January.
    22. Eggoh, Jude C. & Bangake, Chrysost & Rault, Christophe, 2011. "Energy consumption and economic growth revisited in African countries," Energy Policy, Elsevier, vol. 39(11), pages 7408-7421.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:891-:d:81722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.