IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i7p2330-d156413.html
   My bibliography  Save this article

Carbon Emission Intensity, Economic Development and Energy Factors in 19 G20 Countries: Empirical Analysis Based on a Heterogeneous Panel from 1990 to 2015

Author

Listed:
  • Hongze Li

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development (North China Electric Power University), Changping, Beijing 102206, China)

  • Fengyun Li

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Di Shi

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Xinhua Yu

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Jianfei Shen

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

Abstract

The increasing global climate problem caused by excessive carbon emissions results in global carbon emission reduction governance becoming a top priority and requires close international coordination. Group of Twenty (G20) is gradually becoming the leading agency of global carbon emission reduction governance, but the unbalanced development among G20 countries has hindered the full play of G20’s role. Thus, this paper aims to examine the interrelationships among economic development mode, economic development level, and energy factors including energy use efficiency and structure in 19 G20 countries over the period 1990–2015. Considering the panel heterogeneity and the endogeneity of variables, a series of heterogeneous panel analysis techniques are employed in this paper. The empirical findings suggest that for the panel, the improvement of energy use efficiency and the optimization of energy use structure can help to achieve a low-carbon development mode, implying that some international agreements such as the Copenhagen Accord and Paris Agreement on Climate Change are necessary, binding, and effective. However, for individuals, energy factors and development level influence development mode differently across countries, revealing that each country should formulate specific policies that are consistent with its own actual situation. Finally, this paper discusses the role that G20 can play in the global carbon emissions reduction governance, which provides a reference for global low-carbon and sustainable development.

Suggested Citation

  • Hongze Li & Fengyun Li & Di Shi & Xinhua Yu & Jianfei Shen, 2018. "Carbon Emission Intensity, Economic Development and Energy Factors in 19 G20 Countries: Empirical Analysis Based on a Heterogeneous Panel from 1990 to 2015," Sustainability, MDPI, vol. 10(7), pages 1-26, July.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2330-:d:156413
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/7/2330/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/7/2330/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Streimikiene, Dalia & Kasperowicz, Rafał, 2016. "Review of economic growth and energy consumption: A panel cointegration analysis for EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1545-1549.
    2. Muhammad Shahbaz & Smile Dube & Ilhan Ozturk & Abdul Jalil, 2015. "Testing the Environmental Kuznets Curve Hypothesis in Portugal," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 475-481.
    3. Pedroni, Peter, 2004. "Panel Cointegration: Asymptotic And Finite Sample Properties Of Pooled Time Series Tests With An Application To The Ppp Hypothesis," Econometric Theory, Cambridge University Press, vol. 20(3), pages 597-625, June.
    4. Saboori, Behnaz & Sulaiman, Jamalludin, 2013. "CO2 emissions, energy consumption and economic growth in Association of Southeast Asian Nations (ASEAN) countries: A cointegration approach," Energy, Elsevier, vol. 55(C), pages 813-822.
    5. Hongze Li & Bingkang Li & Hao Lu, 2017. "Carbon Dioxide Emissions, Economic Growth, and Selected Types of Fossil Energy Consumption in China: Empirical Evidence from 1965 to 2015," Sustainability, MDPI, vol. 9(5), pages 1-14, April.
    6. Dumitrescu, Elena-Ivona & Hurlin, Christophe, 2012. "Testing for Granger non-causality in heterogeneous panels," Economic Modelling, Elsevier, vol. 29(4), pages 1450-1460.
    7. Jos D valos, 2016. "Sustainable Economic Growth: An Empirical Study for the Asia-Pacific Economic Cooperation Forum," International Journal of Energy Economics and Policy, Econjournals, vol. 6(3), pages 594-601.
    8. Kaika, Dimitra & Zervas, Efthimios, 2013. "The Environmental Kuznets Curve (EKC) theory—Part A: Concept, causes and the CO2 emissions case," Energy Policy, Elsevier, vol. 62(C), pages 1392-1402.
    9. Salahuddin, Mohammad & Gow, Jeff & Ozturk, Ilhan, 2015. "Is the long-run relationship between economic growth, electricity consumption, carbon dioxide emissions and financial development in Gulf Cooperation Council Countries robust?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 317-326.
    10. Jorg Breitung, 2005. "A Parametric approach to the Estimation of Cointegration Vectors in Panel Data," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 151-173.
    11. repec:dau:papers:123456789/11438 is not listed on IDEAS
    12. Kao, Chihwa, 1999. "Spurious regression and residual-based tests for cointegration in panel data," Journal of Econometrics, Elsevier, vol. 90(1), pages 1-44, May.
    13. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    14. Andrew K. Jorgenson, 2014. "Economic development and the carbon intensity of human well-being," Nature Climate Change, Nature, vol. 4(3), pages 186-189, March.
    15. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit, 2016. "The dynamic impact of renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 838-845.
    16. Peter Pedroni, 1999. "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 653-670, November.
    17. Maddala, G S & Wu, Shaowen, 1999. "A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(0), pages 631-652, Special I.
    18. Salahuddin, Mohammad & Alam, Khorshed & Ozturk, Ilhan, 2016. "The effects of Internet usage and economic growth on CO2 emissions in OECD countries: A panel investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1226-1235.
    19. Azam, Muhammad & Khan, Abdul Qayyum, 2016. "Testing the Environmental Kuznets Curve hypothesis: A comparative empirical study for low, lower middle, upper middle and high income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 556-567.
    20. Ewing, Bradley T. & Payne, James E. & Caporin, Massimilano, 2022. "The Asymmetric Impact of Oil Prices and Production on Drilling Rig Trajectory: A correction," Resources Policy, Elsevier, vol. 79(C).
    21. Lotfalipour, Mohammad Reza & Falahi, Mohammad Ali & Ashena, Malihe, 2010. "Economic growth, CO2 emissions, and fossil fuels consumption in Iran," Energy, Elsevier, vol. 35(12), pages 5115-5120.
    22. Pierre Perron & Serena Ng, 1996. "Useful Modifications to some Unit Root Tests with Dependent Errors and their Local Asymptotic Properties," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 63(3), pages 435-463.
    23. Apergis, Nicholas & Payne, James E., 2010. "Natural gas consumption and economic growth: A panel investigation of 67 countries," Applied Energy, Elsevier, vol. 87(8), pages 2759-2763, August.
    24. Nelson C. Mark & Donggyu Sul, 2003. "Cointegration Vector Estimation by Panel DOLS and Long‐run Money Demand," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(5), pages 655-680, December.
    25. Arouri, Mohamed El Hedi & Ben Youssef, Adel & M'henni, Hatem & Rault, Christophe, 2012. "Energy consumption, economic growth and CO2 emissions in Middle East and North African countries," Energy Policy, Elsevier, vol. 45(C), pages 342-349.
    26. Akinlo, A.E., 2008. "Energy consumption and economic growth: Evidence from 11 Sub-Sahara African countries," Energy Economics, Elsevier, vol. 30(5), pages 2391-2400, September.
    27. Granger, C. W. J., 1980. "Testing for causality : A personal viewpoint," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 329-352, May.
    28. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    29. Huiru Zhao & Haoran Zhao & Xiaoyu Han & Zhonghua He & Sen Guo, 2016. "Economic Growth, Electricity Consumption, Labor Force and Capital Input: A More Comprehensive Analysis on North China Using Panel Data," Energies, MDPI, vol. 9(11), pages 1-21, October.
    30. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    31. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    32. Pedroni, Peter, 1999. "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(0), pages 653-670, Special I.
    33. Belke, Ansgar & Dobnik, Frauke & Dreger, Christian, 2011. "Energy consumption and economic growth: New insights into the cointegration relationship," Energy Economics, Elsevier, vol. 33(5), pages 782-789, September.
    34. Lu, Hong-fang & Lin, Bin-le & Campbell, Daniel E. & Sagisaka, Masayuki & Ren, Hai, 2016. "Interactions among energy consumption, economic development and greenhouse gas emissions in Japan after World War II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1060-1072.
    35. Cosimo Magazzino, 2016. "The relationship between real GDP, CO2 emissions, and energy use in the GCC countries: A time series approach," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1152729-115, December.
    36. Marques, António Cardoso & Fuinhas, José Alberto & Nunes, André Roque, 2016. "Electricity generation mix and economic growth: What role is being played by nuclear sources and carbon dioxide emissions in France?," Energy Policy, Elsevier, vol. 92(C), pages 7-19.
    37. Mehmet Akif Destek & Esra Balli & Muge Manga, 2016. "The Relationship between CO2 Emission, Energy Consumption, Urbanization and Trade Openness for Selected CEECs," Research in World Economy, Research in World Economy, Sciedu Press, vol. 7(1), pages 52-58, June.
    38. Granger, C. W. J., 1988. "Some recent development in a concept of causality," Journal of Econometrics, Elsevier, vol. 39(1-2), pages 199-211.
    39. Sebri, Maamar & Ben-Salha, Ousama, 2014. "On the causal dynamics between economic growth, renewable energy consumption, CO2 emissions and trade openness: Fresh evidence from BRICS countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 14-23.
    40. Bhattacharya, Mita & Paramati, Sudharshan Reddy & Ozturk, Ilhan & Bhattacharya, Sankar, 2016. "The effect of renewable energy consumption on economic growth: Evidence from top 38 countries," Applied Energy, Elsevier, vol. 162(C), pages 733-741.
    41. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "Environmental Kuznets Curve of greenhouse gas emissions including technological progress and substitution effects," Energy, Elsevier, vol. 135(C), pages 237-248.
    42. Kais, Saidi & Sami, Hammami, 2016. "An econometric study of the impact of economic growth and energy use on carbon emissions: Panel data evidence from fifty eight countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1101-1110.
    43. Kasman, Adnan & Duman, Yavuz Selman, 2015. "CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis," Economic Modelling, Elsevier, vol. 44(C), pages 97-103.
    44. G. S. Maddala & Shaowen Wu, 1999. "A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 631-652, November.
    45. Alshehry, Atef Saad & Belloumi, Mounir, 2015. "Energy consumption, carbon dioxide emissions and economic growth: The case of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 237-247.
    46. Ouedraogo, Nadia S., 2013. "Energy consumption and economic growth: Evidence from the economic community of West African States (ECOWAS)," Energy Economics, Elsevier, vol. 36(C), pages 637-647.
    47. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wadim Strielkowski & Elena Volkova & Luidmila Pushkareva & Dalia Streimikiene, 2019. "Innovative Policies for Energy Efficiency and the Use of Renewables in Households," Energies, MDPI, vol. 12(7), pages 1-17, April.
    2. Larry Hughes & Moniek Jong & Zach Thorne, 2021. "(De)coupling and (De)carbonizing in the economies and energy systems of the G20," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5614-5639, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingqi Sun & Jing Shi & Boyang Shen & Shuqing Li & Yuwei Wang, 2018. "Nexus among Energy Consumption, Economic Growth, Urbanization and Carbon Emissions: Heterogeneous Panel Evidence Considering China’s Regional Differences," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    2. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    3. Wenjing Zhang & Hengzhou Xu, 2017. "Exploring the causal relationship between carbon emissions and land urbanization quality in China using a panel data analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1445-1462, August.
    4. Muhammad Bilal Khan & Hummera Saleem & Malik Shahzad Shabbir & Xie Huobao, 2022. "The effects of globalization, energy consumption and economic growth on carbon dioxide emissions in South Asian countries," Energy & Environment, , vol. 33(1), pages 107-134, February.
    5. Hongze Li & Bingkang Li & Hao Lu, 2017. "Carbon Dioxide Emissions, Economic Growth, and Selected Types of Fossil Energy Consumption in China: Empirical Evidence from 1965 to 2015," Sustainability, MDPI, vol. 9(5), pages 1-14, April.
    6. H ctor F. Salazar-N ez & Francisco Venegas-Mart nez & Miguel Tinoco-Zerme o, 2020. "Impact of Energy Consumption and Carbon Dioxide Emissions on Economic Growth: Cointegrated Panel Data in 79 Countries Grouped by Income Level," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 218-226.
    7. Kahia, Montassar & Ben Aissa, Mohamed Safouane, 2014. "Renewable and non-renewable energy consumption and economic growth: Evidence from MENA Net Oil Exporting Countries," MPRA Paper 80776, University Library of Munich, Germany.
    8. Jin, Taeyoung & Kim, Jinsoo, 2018. "What is better for mitigating carbon emissions – Renewable energy or nuclear energy? A panel data analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 464-471.
    9. Dehghan Shabani, Zahra & Shahnazi, Rouhollah, 2019. "Energy consumption, carbon dioxide emissions, information and communications technology, and gross domestic product in Iranian economic sectors: A panel causality analysis," Energy, Elsevier, vol. 169(C), pages 1064-1078.
    10. Hu, Hui & Xie, Nan & Fang, Debin & Zhang, Xiaoling, 2018. "The role of renewable energy consumption and commercial services trade in carbon dioxide reduction: Evidence from 25 developing countries," Applied Energy, Elsevier, vol. 211(C), pages 1229-1244.
    11. Mohammad Mafizur Rahman & Xuan-Binh (Benjamin) Vu & Son Nghiem, 2022. "Economic Growth in Six ASEAN Countries: Are Energy, Human Capital and Financial Development Playing Major Roles?," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    12. Dedeoğlu, Dinçer & Kaya, Hüseyin, 2013. "Energy use, exports, imports and GDP: New evidence from the OECD countries," Energy Policy, Elsevier, vol. 57(C), pages 469-476.
    13. Dogan, Eyup & Seker, Fahri, 2016. "The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1074-1085.
    14. Fang, Zheng & Chang, Youngho, 2016. "Energy, human capital and economic growth in Asia Pacific countries — Evidence from a panel cointegration and causality analysis," Energy Economics, Elsevier, vol. 56(C), pages 177-184.
    15. Azam, Anam & Ateeq, Muhammad & Shafique, Muhammad & Rafiq, Muhammad & Yuan, Jiahai, 2023. "Primary energy consumption-growth nexus: The role of natural resources, quality of government, and fixed capital formation," Energy, Elsevier, vol. 263(PA).
    16. Rahman, Mohammad Mafizur & Velayutham, Eswaran, 2020. "Renewable and non-renewable energy consumption-economic growth nexus: New evidence from South Asia," Renewable Energy, Elsevier, vol. 147(P1), pages 399-408.
    17. Olimpia Neagu & Mircea Constantin Teodoru, 2019. "The Relationship between Economic Complexity, Energy Consumption Structure and Greenhouse Gas Emission: Heterogeneous Panel Evidence from the EU Countries," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    18. Nagmi Moftah Aimer, 2020. "Renewable energy consumption, financial development and economic growth: Evidence from panel data for the Middle East and North African countries," Economics Bulletin, AccessEcon, vol. 40(3), pages 2058-2072.
    19. Shahbaz, Muhammad & Raghutla, Chandrashekar & Chittedi, Krishna Reddy & Jiao, Zhilun & Vo, Xuan Vinh, 2020. "The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index," Energy, Elsevier, vol. 207(C).
    20. Jos Alberto Fuinhas & Ant nio Cardoso Marques & Alcino Pinto Couto, 2015. "Oil-Growth Nexus in Oil Producing Countries: Macro Panel Evidence," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 148-163.

    More about this item

    Keywords

    19 G20 countries; CO 2 emission intensity; energy consumption intensity; fossil energy consumption share; GDP per capita; heterogeneous panel analysis techniques;
    All these keywords.

    JEL classification:

    • G20 - Financial Economics - - Financial Institutions and Services - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2330-:d:156413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.