Advanced Search
MyIDEAS: Login to save this paper or follow this series

Useful Modifications to Some Unit Root Tests with Dependent Errors and Their Local Asymptotic Properties


Author Info

  • Perron, P.
  • Ng, S.


Many unit root tests have distorted sizes when the root of the error process is close to the unit circle. This paper analyses the properties of the Phillips-Perron tests and some of their variants in the problematic parameter space. We use local asymptotic analyses to explain why the Phillips-Perron tests suffer from severe size distortions regardless of the choice of the spectral density estimator but that the modified statistics show dramatic improvements in size when used in conjunction with a particular formulation of an autoregressive spectral density estimator. We explain why kernel based spectral density estimators aggravate the size problem in the Phillips-Perron tests and yield no size improvement to the modified statistics. The local asymptotic power of the modified statistics are also evaluated. These modified statistics are recommended as being useful in empirical work since they are free of. the size problems which have plagued many unit root tests, and they retain respectable power. Copyright 1996 by The Review of Economic Studies Limited.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL:
Download Restriction: no

Bibliographic Info

Paper provided by Universite de Montreal, Departement de sciences economiques in its series Cahiers de recherche with number 9427.

as in new window
Length: 22 pages
Date of creation: 1994
Date of revision:
Handle: RePEc:mtl:montde:9427

Contact details of provider:
Postal: CP 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7
Phone: (514) 343-6540
Fax: (514) 343-5831
Web page:
More information through EDIRC

Related research


Other versions of this item:


No references listed on IDEAS
You can help add them by filling out this form.


Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.


This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


Access and download statistics


When requesting a correction, please mention this item's handle: RePEc:mtl:montde:9427. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sharon BREWER).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.