IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v91y2014icp20-36.html
   My bibliography  Save this article

On learning dynamics underlying the evolution of learning rules

Author

Listed:
  • Dridi, Slimane
  • Lehmann, Laurent

Abstract

In order to understand the development of non-genetically encoded actions during an animal’s lifespan, it is necessary to analyze the dynamics and evolution of learning rules producing behavior. Owing to the intrinsic stochastic and frequency-dependent nature of learning dynamics, these rules are often studied in evolutionary biology via agent-based computer simulations. In this paper, we show that stochastic approximation theory can help to qualitatively understand learning dynamics and formulate analytical models for the evolution of learning rules. We consider a population of individuals repeatedly interacting during their lifespan, and where the stage game faced by the individuals fluctuates according to an environmental stochastic process. Individuals adjust their behavioral actions according to learning rules belonging to the class of experience-weighted attraction learning mechanisms, which includes standard reinforcement and Bayesian learning as special cases. We use stochastic approximation theory in order to derive differential equations governing action play probabilities, which turn out to have qualitative features of mutator-selection equations. We then perform agent-based simulations to find the conditions where the deterministic approximation is closest to the original stochastic learning process for standard 2-action 2-player fluctuating games, where interaction between learning rules and preference reversal may occur. Finally, we analyze a simplified model for the evolution of learning in a producer–scrounger game, which shows that the exploration rate can interact in a non-intuitive way with other features of co-evolving learning rules. Overall, our analyses illustrate the usefulness of applying stochastic approximation theory in the study of animal learning.

Suggested Citation

  • Dridi, Slimane & Lehmann, Laurent, 2014. "On learning dynamics underlying the evolution of learning rules," Theoretical Population Biology, Elsevier, vol. 91(C), pages 20-36.
  • Handle: RePEc:eee:thpobi:v:91:y:2014:i:c:p:20-36
    DOI: 10.1016/j.tpb.2013.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004058091300083X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2013.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    3. McElreath, Richard & Boyd, Robert, 2007. "Mathematical Models of Social Evolution," University of Chicago Press Economics Books, University of Chicago Press, number 9780226558264, September.
    4. Fudenberg, Drew & Takahashi, Satoru, 2011. "Heterogeneous beliefs and local information in stochastic fictitious play," Games and Economic Behavior, Elsevier, vol. 71(1), pages 100-120, January.
    5. Jordan, J. S., 1991. "Bayesian learning in normal form games," Games and Economic Behavior, Elsevier, vol. 3(1), pages 60-81, February.
    6. Foster, Dean P. & Young, H. Peyton, 2003. "Learning, hypothesis testing, and Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 45(1), pages 73-96, October.
    7. Arnon Lotem, 2013. "Learning to avoid the behavioral gambit," Behavioral Ecology, International Society for Behavioral Ecology, vol. 24(1), pages 1-13.
    8. Jorgen W. Weibull, 1997. "Evolutionary Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262731215, December.
    9. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
    10. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    11. Josef Hofbauer & William H. Sandholm, 2002. "On the Global Convergence of Stochastic Fictitious Play," Econometrica, Econometric Society, vol. 70(6), pages 2265-2294, November.
    12. Young, H. Peyton, 2004. "Strategic Learning and its Limits," OUP Catalogue, Oxford University Press, number 9780199269181.
    13. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    14. Josephson, Jens, 2008. "A numerical analysis of the evolutionary stability of learning rules," Journal of Economic Dynamics and Control, Elsevier, vol. 32(5), pages 1569-1599, May.
    15. Marcus W. Feldman & Kenichi Aoki & Jochen Kumm, 1996. "Individual Versus Social Learning: Evolutionary Analysis in a Fluctuating Environment," Working Papers 96-05-030, Santa Fe Institute.
    16. Binmore, Kenneth G. & Samuelson, Larry, 1992. "Evolutionary stability in repeated games played by finite automata," Journal of Economic Theory, Elsevier, vol. 57(2), pages 278-305, August.
    17. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    18. Benaim, Michel & Hirsch, Morris W., 1999. "Mixed Equilibria and Dynamical Systems Arising from Fictitious Play in Perturbed Games," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 36-72, October.
    19. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, December.
    20. Cho, In-Koo & Matsui, Akihiko, 2005. "Learning aspiration in repeated games," Journal of Economic Theory, Elsevier, vol. 124(2), pages 171-201, October.
    21. Tim W. Fawcett & Steven Hamblin & Luc-Alain Giraldeau, 2013. "Exposing the behavioral gambit: the evolution of learning and decision rules," Behavioral Ecology, International Society for Behavioral Ecology, vol. 24(1), pages 2-11.
    22. Robert Axelrod, 1980. "Effective Choice in the Prisoner's Dilemma," Journal of Conflict Resolution, Peace Science Society (International), vol. 24(1), pages 3-25, March.
    23. Arbilly, Michal & Motro, Uzi & Feldman, Marcus W. & Lotem, Arnon, 2011. "Recombination and the evolution of coordinated phenotypic expression in a frequency-dependent game," Theoretical Population Biology, Elsevier, vol. 80(4), pages 244-255.
    24. Robert Axelrod, 1980. "More Effective Choice in the Prisoner's Dilemma," Journal of Conflict Resolution, Peace Science Society (International), vol. 24(3), pages 379-403, September.
    25. Ho, Teck H. & Camerer, Colin F. & Chong, Juin-Kuan, 2007. "Self-tuning experience weighted attraction learning in games," Journal of Economic Theory, Elsevier, vol. 133(1), pages 177-198, March.
    26. repec:hhs:iuiwop:487 is not listed on IDEAS
    27. Gale, John & Binmore, Kenneth G. & Samuelson, Larry, 1995. "Learning to be imperfect: The ultimatum game," Games and Economic Behavior, Elsevier, vol. 8(1), pages 56-90.
    28. Izquierdo, Luis R. & Izquierdo, Segismundo S. & Gotts, Nicholas M. & Polhill, J. Gary, 2007. "Transient and asymptotic dynamics of reinforcement learning in games," Games and Economic Behavior, Elsevier, vol. 61(2), pages 259-276, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    2. Cason, Timothy N. & Friedman, Daniel & Hopkins, Ed, 2010. "Testing the TASP: An experimental investigation of learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2309-2331, November.
    3. Jakub Bielawski & Thiparat Chotibut & Fryderyk Falniowski & Michal Misiurewicz & Georgios Piliouras, 2022. "Unpredictable dynamics in congestion games: memory loss can prevent chaos," Papers 2201.10992, arXiv.org, revised Jan 2022.
    4. Hofbauer, Josef & Hopkins, Ed, 2005. "Learning in perturbed asymmetric games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 133-152, July.
    5. Pangallo, Marco & Sanders, James B.T. & Galla, Tobias & Farmer, J. Doyne, 2022. "Towards a taxonomy of learning dynamics in 2 × 2 games," Games and Economic Behavior, Elsevier, vol. 132(C), pages 1-21.
    6. Jim Engle-Warnick & Ed Hopkins, 2006. "A Simple Test of Learning Theory," Levine's Bibliography 321307000000000724, UCLA Department of Economics.
    7. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    8. Beggs, A.W., 2005. "On the convergence of reinforcement learning," Journal of Economic Theory, Elsevier, vol. 122(1), pages 1-36, May.
    9. Chernov, G. & Susin, I., 2019. "Models of learning in games: An overview," Journal of the New Economic Association, New Economic Association, vol. 44(4), pages 77-125.
    10. Cominetti, Roberto & Melo, Emerson & Sorin, Sylvain, 2010. "A payoff-based learning procedure and its application to traffic games," Games and Economic Behavior, Elsevier, vol. 70(1), pages 71-83, September.
    11. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    12. Mohlin, Erik & Östling, Robert & Wang, Joseph Tao-yi, 2020. "Learning by similarity-weighted imitation in winner-takes-all games," Games and Economic Behavior, Elsevier, vol. 120(C), pages 225-245.
    13. Naoki Funai, 2019. "Convergence results on stochastic adaptive learning," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 907-934, November.
    14. Battalio,R. & Samuelson,L. & Huyck,J. van, 1998. "Risk dominance, payoff dominance and probabilistic choice learning," Working papers 2, Wisconsin Madison - Social Systems.
    15. Duffy, John & Hopkins, Ed, 2005. "Learning, information, and sorting in market entry games: theory and evidence," Games and Economic Behavior, Elsevier, vol. 51(1), pages 31-62, April.
    16. Ho, Teck H. & Camerer, Colin F. & Chong, Juin-Kuan, 2007. "Self-tuning experience weighted attraction learning in games," Journal of Economic Theory, Elsevier, vol. 133(1), pages 177-198, March.
    17. Mengel, Friederike, 2012. "Learning across games," Games and Economic Behavior, Elsevier, vol. 74(2), pages 601-619.
    18. Ianni, Antonella, 2014. "Learning strict Nash equilibria through reinforcement," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 148-155.
    19. Kets, W., 2008. "Networks and learning in game theory," Other publications TiSEM 7713fce1-3131-498c-8c6f-3, Tilburg University, School of Economics and Management.
    20. Teck H Ho & Colin Camerer & Juin-Kuan Chong, 2003. "Functional EWA: A one-parameter theory of learning in games," Levine's Working Paper Archive 506439000000000514, David K. Levine.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:91:y:2014:i:c:p:20-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.