IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v114y2017icp226-241.html
   My bibliography  Save this article

Effectiveness of low-carbon development strategies: Evaluation of policy scenarios for the urban transport sector in a Brazilian megacity

Author

Listed:
  • Menezes, Esther
  • Maia, Alexandre Gori
  • de Carvalho, Cristiane Silva

Abstract

This paper evaluates low-carbon urban development strategies for the transport sector in São Paulo, one of the largest cities in the world. For each mobility policy selected, we build scenarios to evaluate the potential of mitigating GHG emissions, shedding light on institutional aspects, benefits and risks of implementing each measure. Selected policies analyzed in this paper focus on: (i) reduction of frequency and distance of motorized trips; (ii) improvement of public transport; and (ii) technological issues, from improvement of fuel efficiency of all transport modes to replacement of fossil fuels by biofuels. Results show that the measures that present the highest potential to reduce GHG emissions are those that promote the use of biofuels, particularly ethanol, followed by those that favor the use of public transport. Moreover, simulations of integrated policies evidence that their effectiveness depends upon the adoption of coordinated policies at Federal, State and Local levels. Lastly, we highlight the complementary nature of the proposed policies and the contribution of scenario building to the debate on the strategic planning of integrated urban public policies to promote sustainable development in São Paulo City.

Suggested Citation

  • Menezes, Esther & Maia, Alexandre Gori & de Carvalho, Cristiane Silva, 2017. "Effectiveness of low-carbon development strategies: Evaluation of policy scenarios for the urban transport sector in a Brazilian megacity," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 226-241.
  • Handle: RePEc:eee:tefoso:v:114:y:2017:i:c:p:226-241
    DOI: 10.1016/j.techfore.2016.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162516302219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2016.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xue & Ma, Shoufeng & Tian, Junfang & Jia, Ning & Li, Geng, 2015. "A system dynamics approach to scenario analysis for urban passenger transport energy consumption and CO2 emissions: A case study of Beijing," Energy Policy, Elsevier, vol. 85(C), pages 253-270.
    2. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    3. Musango, Josephine K. & Brent, Alan C. & Bassi, Andrea M., 2014. "Modelling the transition towards a green economy in South Africa," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 257-273.
    4. Sangho Choo & Patricia Mokhtarian & Ilan Salomon, 2005. "Does telecommuting reduce vehicle-miles traveled? An aggregate time series analysis for the U.S," Transportation, Springer, vol. 32(1), pages 37-64, January.
    5. Small, Kenneth A., 2012. "Energy policies for passenger motor vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(6), pages 874-889.
    6. Sabounchi, Nasim S. & Triantis, Konstantinos P. & Sarangi, Sudipta & Liu, Shiyong, 2014. "Dynamic simulation modeling and policy analysis of an area-based congestion pricing scheme for a transportation socioeconomic system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 357-383.
    7. Li, Lanhai & Hoffeman, Robert & McInnis, Bert & Jean de la Paix, Mupenzi & Li, Xuemei, 2012. "Impacts of alternative vehicle fuel policies on Canadian energy demand and emissions," Transport Policy, Elsevier, vol. 21(C), pages 92-100.
    8. Commander, Simon & Nikoloski, Zlatko & Vagliasindi, Maria, 2015. "Estimating the Size of External Effects of Energy Subsidies," IZA Discussion Papers 8865, Institute of Labor Economics (IZA).
    9. Ross Morrow, W. & Gallagher, Kelly Sims & Collantes, Gustavo & Lee, Henry, 2010. "Analysis of policies to reduce oil consumption and greenhouse-gas emissions from the US transportation sector," Energy Policy, Elsevier, vol. 38(3), pages 1305-1320, March.
    10. Commander,Simon John & Nikoloski,Zlatko Slobodan & Vagliasindi,Maria, 2015. "Estimating the size of external effects of energy subsidies in transport and agriculture," Policy Research Working Paper Series 7227, The World Bank.
    11. World Bank, 2011. "Brazil Low Carbon Case Study : Transport," World Bank Publications - Reports 12798, The World Bank Group.
    12. Raele, Ricardo & Boaventura, João Mauricio Gama & Fischmann, Adalberto Américo & Sarturi, Greici, 2014. "Scenarios for the second generation ethanol in Brazil," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 205-223.
    13. Alcott, Blake, 2005. "Jevons' paradox," Ecological Economics, Elsevier, vol. 54(1), pages 9-21, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Neves Schmitz Gonçalves & Renata Albergaria de Mello Bandeira & Mariane Gonzalez da Costa & George Vasconcelos Goes & Tássia Faria de Assis & Márcio de Almeida D’Agosto & Isabela Rocha Pombo Le, 2020. "A Multitier Approach to Estimating the Energy Efficiency of Urban Passenger Mobility," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    2. Robert Guzik & Arkadiusz Kołoś & Jakub Taczanowski & Łukasz Fiedeń & Krzysztof Gwosdz & Katarzyna Hetmańczyk & Jakub Łodziński, 2021. "The Second Generation Electromobility in Polish Urban Public Transport: The Factors and Mechanisms of Spatial Development," Energies, MDPI, vol. 14(22), pages 1-29, November.
    3. Shankar, Ravi & Pathak, Devendra Kumar & Choudhary, Devendra, 2019. "Decarbonizing freight transportation: An integrated EFA-TISM approach to model enablers of dedicated freight corridors," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 85-100.
    4. Liu, Manzhi & Chen, Meng & He, Gang, 2017. "The origin and prospect of billion-ton coal production capacity in China," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 70-85.
    5. Sakthivel, R. & Ramesh, K. & Purnachandran, R. & Mohamed Shameer, P., 2018. "A review on the properties, performance and emission aspects of the third generation biodiesels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2970-2992.
    6. Verônica Ghisolfi & Lóránt Antal Tavasszy & Gonçalo Homem de Almeida Correia & Gisele de Lorena Diniz Chaves & Glaydston Mattos Ribeiro, 2022. "Freight Transport Decarbonization: A Systematic Literature Review of System Dynamics Models," Sustainability, MDPI, vol. 14(6), pages 1-30, March.
    7. Vasconcelos, Marcelo Holanda & Mendes, Fernanda Machado & Ramos, Lucas & Dias, Marina Oliveira S. & Bonomi, Antonio & Jesus, Charles Dayan F. & Watanabe, Marcos Djun B. & Junqueira, Tassia Lopes & Mil, 2020. "Techno-economic assessment of bioenergy and biofuel production in integrated sugarcane biorefinery: Identification of technological bottlenecks and economic feasibility of dilute acid pretreatment," Energy, Elsevier, vol. 199(C).
    8. Benvenutti, Lívia M. & Uriona-Maldonado, Mauricio & Campos, Lucila M.S., 2019. "The impact of CO2 mitigation policies on light vehicle fleet in Brazil," Energy Policy, Elsevier, vol. 126(C), pages 370-379.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    2. Bhardwaj, Chandan & Axsen, Jonn & McCollum, David, 2022. "Which “second-best” climate policies are best? Simulating cost-effective policy mixes for passenger vehicles," Resource and Energy Economics, Elsevier, vol. 70(C).
    3. O'Rear, Eric G. & Sarica, Kemal & Tyner, Wallace E., 2015. "Analysis of impacts of alternative policies aimed at increasing US energy independence and reducing GHG emissions," Transport Policy, Elsevier, vol. 37(C), pages 121-133.
    4. Proost, Stef & Van Dender, Kurt, 2012. "Energy and environment challenges in the transport sector," Economics of Transportation, Elsevier, vol. 1(1), pages 77-87.
    5. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    6. Whistance, Jarrett & Thompson, Wyatt, 2014. "The role of CAFE standards and alternative-fuel vehicle production credits in U.S. biofuels markets," Energy Policy, Elsevier, vol. 74(C), pages 147-157.
    7. Jia Shi & Xuesong Guo & Xiangnan Hu, 2019. "Engaging Stakeholders in Urban Traffic Restriction Policy Assessment Using System Dynamics: The Case Study of Xi’an City, China," Sustainability, MDPI, vol. 11(14), pages 1-16, July.
    8. Brand, Christian & Anable, Jillian & Tran, Martino, 2013. "Accelerating the transformation to a low carbon passenger transport system: The role of car purchase taxes, feebates, road taxes and scrappage incentives in the UK," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 132-148.
    9. Kim, Jinwon, 2016. "Vehicle fuel-efficiency choices, emission externalities, and urban sprawl," Economics of Transportation, Elsevier, vol. 5(C), pages 24-36.
    10. Finn Roar Aune & Ann Christin Bøeng & Snorre Kverndokk & Lars Lindholt & Knut Einar Rosendahl, 2017. "Fuel Efficiency Improvements: Feedback Mechanisms and Distributional Effects in the Oil Market," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(1), pages 15-45, September.
    11. Jun Rentschler & Morgan Bazilian, 2017. "Policy Monitor—Principles for Designing Effective Fossil Fuel Subsidy Reforms," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 138-155.
    12. Ghoddusi, Hamed & Roy, Mandira, 2017. "Supply elasticity matters for the rebound effect and its impact on policy comparisons," Energy Economics, Elsevier, vol. 67(C), pages 111-120.
    13. Font Vivanco, David & McDowall, Will & Freire-González, Jaume & Kemp, René & van der Voet, Ester, 2016. "The foundations of the environmental rebound effect and its contribution towards a general framework," Ecological Economics, Elsevier, vol. 125(C), pages 60-69.
    14. Yeh, Sonia & Burtraw, Dallas & Sterner, Thomas & Greene, David, 2021. "Tradable performance standards in the transportation sector," Energy Economics, Elsevier, vol. 102(C).
    15. Tsvetanov, Tsvetan & Segerson, Kathleen, 2013. "Re-evaluating the role of energy efficiency standards: A behavioral economics approach," Journal of Environmental Economics and Management, Elsevier, vol. 66(2), pages 347-363.
    16. Mokhtarian, Patricia L., 2020. "Wenn die Telekommunikation den Verkehr so gut ersetzen kann, warum gibt es dann immer mehr Staus?," Forschungsberichte der ARL: Aufsätze, in: Reutter, Ulrike & Holz-Rau, Christian & Albrecht, Janna & Hülz, Martina (ed.), Wechselwirkungen von Mobilität und Raumentwicklung im Kontext gesellschaftlichen Wandels, volume 14, pages 167-195, ARL – Akademie für Raumentwicklung in der Leibniz-Gemeinschaft.
    17. Litman, Todd, 2013. "Changing North American vehicle-travel price sensitivities: Implications for transport and energy policy," Transport Policy, Elsevier, vol. 28(C), pages 2-10.
    18. Schipper, Lee, 2011. "Automobile use, fuel economy and CO2 emissions in industrialized countries: Encouraging trends through 2008?," Transport Policy, Elsevier, vol. 18(2), pages 358-372, March.
    19. Damert, Matthias & Rudolph, Frederic, 2018. "Policy options for a decarbonisation of passenger cars in the EU: Recommendations based on a literature review," Wuppertal Papers 193, Wuppertal Institute for Climate, Environment and Energy.
    20. Sykes, Maxwell & Axsen, Jonn, 2017. "No free ride to zero-emissions: Simulating a region's need to implement its own zero-emissions vehicle (ZEV) mandate to achieve 2050 GHG targets," Energy Policy, Elsevier, vol. 110(C), pages 447-460.

    More about this item

    Keywords

    Urban mobility; Transports; Greenhouse gases; Low-carbon policies; Scenario building; Dynamic simulation;
    All these keywords.

    JEL classification:

    • O18 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Urban, Rural, Regional, and Transportation Analysis; Housing; Infrastructure
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:114:y:2017:i:c:p:226-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.