IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v70y2022ics0928765522000367.html
   My bibliography  Save this article

Which “second-best” climate policies are best? Simulating cost-effective policy mixes for passenger vehicles

Author

Listed:
  • Bhardwaj, Chandan
  • Axsen, Jonn
  • McCollum, David

Abstract

In the real-world of political opposition and complex market failures, carbon pricing alone will not achieve deep GHG mitigation targets. Hence, we search for the most cost-effective “second-best” policies. Focusing on the light-duty vehicle sector in the case of Canada, we compare several policies in terms of effectiveness (regarding 2030 GHG goals) and mitigation costs, namely: (i) a carbon tax; (ii) a vehicle emission standard (or VES); (iii) a zero emissions vehicle (ZEV) mandate, and (iv) combinations of all three at various stringencies. In this effort, we apply the AUtomaker-consumer Model (AUM), which endogenously simulates consumer and automaker decisions and technological change. Comparing individual policies, the regulations are about three times more expensive than the carbon tax. Among “second-best” policies, the VES is cheaper than a ZEV mandate at lower stringencies, but at higher stringencies the two are similarly efficient (both incentivize widespread ZEV deployment). In policy mixes, cost-effectiveness is improved by a carbon tax. Specifically, inclusion of a CDN$100–150/tonne tax can achieve targets while being 30–40% less costly than a regulation alone. We suggest that policymakers implement carbon pricing as stringently as politically feasible (for efficiency), complemented by regulations as needed (for efficacy) to meet GHG targets.

Suggested Citation

  • Bhardwaj, Chandan & Axsen, Jonn & McCollum, David, 2022. "Which “second-best” climate policies are best? Simulating cost-effective policy mixes for passenger vehicles," Resource and Energy Economics, Elsevier, vol. 70(C).
  • Handle: RePEc:eee:resene:v:70:y:2022:i:c:s0928765522000367
    DOI: 10.1016/j.reseneeco.2022.101319
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928765522000367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.reseneeco.2022.101319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonn Axsen & Patrick Plötz & Michael Wolinetz, 2020. "Crafting strong, integrated policy mixes for deep CO2 mitigation in road transport," Nature Climate Change, Nature, vol. 10(9), pages 809-818, September.
    2. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    3. Jenn, Alan & Azevedo, Inês & Michalek, Jeremy Joseph, 2019. "Alternative-Fuel-Vehicle Policy Interactions Increase U.S. Greenhouse Gas Emissions," OSF Preprints n69tp, Center for Open Science.
    4. Andreas Dombret & Yalin Gündüz & Jörg Rocholl, 2019. "Will German Banks Earn Their Cost Of Capital?," Contemporary Economic Policy, Western Economic Association International, vol. 37(1), pages 156-169, January.
    5. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2013. "Renewable energy subsidies: Second-best policy or fatal aberration for mitigation?," Resource and Energy Economics, Elsevier, vol. 35(3), pages 217-234.
    6. Sykes, Maxwell & Axsen, Jonn, 2017. "No free ride to zero-emissions: Simulating a region's need to implement its own zero-emissions vehicle (ZEV) mandate to achieve 2050 GHG targets," Energy Policy, Elsevier, vol. 110(C), pages 447-460.
    7. Soren T. Anderson & James M. Sallee, 2011. "Using Loopholes to Reveal the Marginal Cost of Regulation: The Case of Fuel-Economy Standards," American Economic Review, American Economic Association, vol. 101(4), pages 1375-1409, June.
    8. Fouquet, Roger, 2012. "Trends in income and price elasticities of transport demand (1850–2010)," Energy Policy, Elsevier, vol. 50(C), pages 62-71.
    9. Stanley, John & Ellison, Richard & Loader, Chris & Hensher, David, 2018. "Reducing Australian motor vehicle greenhouse gas emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 76-88.
    10. Douenne, Thomas & Fabre, Adrien, 2020. "French attitudes on climate change, carbon taxation and other climate policies," Ecological Economics, Elsevier, vol. 169(C).
    11. Kern, Florian & Rogge, Karoline S. & Howlett, Michael, 2019. "Policy mixes for sustainability transitions: New approaches and insights through bridging innovation and policy studies," Research Policy, Elsevier, vol. 48(10).
    12. Jenn, Alan & Azevedo, Inês L. & Michalek, Jeremy J., 2019. "Alternative-fuel-vehicle policy interactions increase U.S. greenhouse gas emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 396-407.
    13. Nordhaus, William, 2011. "Designing a friendly space for technological change to slow global warming," Energy Economics, Elsevier, vol. 33(4), pages 665-673, July.
    14. de Bovenberg, A Lans & Mooij, Ruud A, 1994. "Environmental Levies and Distortionary Taxation," American Economic Review, American Economic Association, vol. 84(4), pages 1085-1089, September.
    15. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    16. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
    17. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    18. Achtnicht, Martin & von Graevenitz, Kathrine & Koesler, Simon & Löschel, Andreas & Schoeman, Beaumont & Tovar Reaños, Miguel Angel, 2015. "Including road transport in the EU-ETS: An alternative for the future?," ZEW Expertises, ZEW - Leibniz Centre for European Economic Research, number 111452.
    19. Antonio M. Bento & Lawrence H. Goulder & Mark R. Jacobsen & Roger H. von Haefen, 2009. "Distributional and Efficiency Impacts of Increased US Gasoline Taxes," American Economic Review, American Economic Association, vol. 99(3), pages 667-699, June.
    20. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    21. Chi Liu & Wei Ma & Maolin Chen & Wencai Ren & Dongming Sun, 2019. "A vertical silicon-graphene-germanium transistor," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    22. Goulder, Lawrence H. & Jacobsen, Mark R. & van Benthem, Arthur A., 2012. "Unintended consequences from nested state and federal regulations: The case of the Pavley greenhouse-gas-per-mile limits," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 187-207.
    23. Long, Zoe & Kitt, Shelby & Axsen, Jonn, 2021. "Who supports which low-carbon transport policies? Characterizing heterogeneity among Canadian citizens," Energy Policy, Elsevier, vol. 155(C).
    24. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    25. Ross Morrow, W. & Gallagher, Kelly Sims & Collantes, Gustavo & Lee, Henry, 2010. "Analysis of policies to reduce oil consumption and greenhouse-gas emissions from the US transportation sector," Energy Policy, Elsevier, vol. 38(3), pages 1305-1320, March.
    26. R. G. Lipsey & Kelvin Lancaster, 1956. "The General Theory of Second Best," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 24(1), pages 11-32.
    27. Brand, Christian & Cluzel, Celine & Anable, Jillian, 2017. "Modeling the uptake of plug-in vehicles in a heterogeneous car market using a consumer segmentation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 121-136.
    28. David Hensher, 2002. "A Systematic Assessment of the Environmental Impacts of Transport Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 185-217, June.
    29. Rhodes, Ekaterina & Axsen, Jonn & Jaccard, Mark, 2017. "Exploring Citizen Support for Different Types of Climate Policy," Ecological Economics, Elsevier, vol. 137(C), pages 56-69.
    30. Durrmeyer, Isis & Samano, Mario, 2016. "To Rebate or Not to Rebate: Fuel Economy Standards vs. Feebates?," TSE Working Papers 16-732, Toulouse School of Economics (TSE), revised May 2017.
    31. Sanya Carley & Lincoln L. Davies & David B. Spence & Nikolaos Zirogiannis, 2018. "Empirical evaluation of the stringency and design of renewable portfolio standards," Nature Energy, Nature, vol. 3(9), pages 754-763, September.
    32. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Institute of Transportation Studies, Working Paper Series qt02n9j6cv, Institute of Transportation Studies, UC Davis.
    33. Holmgren, Johan, 2007. "Meta-analysis of public transport demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 1021-1035, December.
    34. Jagannathan, Ravi & Matsa, David A. & Meier, Iwan & Tarhan, Vefa, 2016. "Why do firms use high discount rates?," Journal of Financial Economics, Elsevier, vol. 120(3), pages 445-463.
    35. West, Sarah E., 2004. "Distributional effects of alternative vehicle pollution control policies," Journal of Public Economics, Elsevier, vol. 88(3-4), pages 735-757, March.
    36. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
    37. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    38. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
    39. Lawrence H. Goulder & Roberton C. Williams III, 2003. "The Substantial Bias from Ignoring General Equilibrium Effects in Estimating Excess Burden, and a Practical Solution," Journal of Political Economy, University of Chicago Press, vol. 111(4), pages 898-927, August.
    40. Wolinetz, Michael & Axsen, Jonn, 2017. "How policy can build the plug-in electric vehicle market: Insights from the REspondent-based Preference And Constraints (REPAC) model," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 238-250.
    41. Small, Kenneth A., 2012. "Energy policies for passenger motor vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(6), pages 874-889.
    42. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
    43. Nic Rivers & Mark Jaccard, 2005. "Combining Top-Down and Bottom-Up Approaches to Energy-Economy Modeling Using Discrete Choice Methods," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 83-106.
    44. Weiss, Martin & Patel, Martin K. & Junginger, Martin & Perujo, Adolfo & Bonnel, Pierre & van Grootveld, Geert, 2012. "On the electrification of road transport - Learning rates and price forecasts for hybrid-electric and battery-electric vehicles," Energy Policy, Elsevier, vol. 48(C), pages 374-393.
    45. Austin, David & Dinan, Terry, 2005. "Clearing the air: The costs and consequences of higher CAFE standards and increased gasoline taxes," Journal of Environmental Economics and Management, Elsevier, vol. 50(3), pages 562-582, November.
    46. Mark R. Jacobsen, 2013. "Evaluating US Fuel Economy Standards in a Model with Producer and Household Heterogeneity," American Economic Journal: Economic Policy, American Economic Association, vol. 5(2), pages 148-187, May.
    47. Lori Bennear & Robert Stavins, 2007. "Second-best theory and the use of multiple policy instruments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(1), pages 111-129, May.
    48. Duncan McLaren & Nils Markusson, 2020. "The co-evolution of technological promises, modelling, policies and climate change targets," Nature Climate Change, Nature, vol. 10(5), pages 392-397, May.
    49. William D. Nordhaus, 2014. "The Perils of the Learning Model for Modeling Endogenous Technological Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    50. Pinelopi Koujianou Goldberg, 1998. "The Effects of the Corporate Average Fuel Efficiency Standards in the US," Journal of Industrial Economics, Wiley Blackwell, vol. 46(1), pages 1-33, March.
    51. Fox, Jacob & Axsen, Jonn & Jaccard, Mark, 2017. "Picking Winners: Modelling the Costs of Technology-specific Climate Policy in the U.S. Passenger Vehicle Sector," Ecological Economics, Elsevier, vol. 137(C), pages 133-147.
    52. Michael Pahle & Dallas Burtraw & Christian Flachsland & Nina Kelsey & Eric Biber & Jonas Meckling & Ottmar Edenhofer & John Zysman, 2018. "Sequencing to ratchet up climate policy stringency," Nature Climate Change, Nature, vol. 8(10), pages 861-867, October.
    53. Ma, Tieju & Nakamori, Yoshiteru, 2009. "Modeling technological change in energy systems – From optimization to agent-based modeling," Energy, Elsevier, vol. 34(7), pages 873-879.
    54. Xie, Fei & Lin, Zhenhong, 2017. "Market-driven automotive industry compliance with fuel economy and greenhouse gas standards: Analysis based on consumer choice," Energy Policy, Elsevier, vol. 108(C), pages 299-311.
    55. Nykvist, Björn & Sprei, Frances & Nilsson, Måns, 2019. "Assessing the progress toward lower priced long range battery electric vehicles," Energy Policy, Elsevier, vol. 124(C), pages 144-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Axsen, Jonn & Wolinetz, Michael, 2023. "What does a low-carbon fuel standard contribute to a policy mix? An interdisciplinary review of evidence and research gaps," Transport Policy, Elsevier, vol. 133(C), pages 54-63.
    2. Hössinger, Reinhard & Peer, Stefanie & Juschten, Maria, 2023. "Give citizens a task: An innovative tool to compose policy bundles that reach the climate goal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhardwaj, Chandan & Axsen, Jonn & McCollum, David, 2022. "How to design a zero-emissions vehicle mandate? Simulating impacts on sales, GHG emissions and cost-effectiveness using the AUtomaker-Consumer Model (AUM)," Transport Policy, Elsevier, vol. 117(C), pages 152-168.
    2. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    3. Sykes, Maxwell & Axsen, Jonn, 2017. "No free ride to zero-emissions: Simulating a region's need to implement its own zero-emissions vehicle (ZEV) mandate to achieve 2050 GHG targets," Energy Policy, Elsevier, vol. 110(C), pages 447-460.
    4. Rhodes, Ekaterina & Scott, William A. & Jaccard, Mark, 2021. "Designing flexible regulations to mitigate climate change: A cross-country comparative policy analysis," Energy Policy, Elsevier, vol. 156(C).
    5. Axsen, Jonn & Wolinetz, Michael, 2023. "What does a low-carbon fuel standard contribute to a policy mix? An interdisciplinary review of evidence and research gaps," Transport Policy, Elsevier, vol. 133(C), pages 54-63.
    6. Fox, Jacob & Axsen, Jonn & Jaccard, Mark, 2017. "Picking Winners: Modelling the Costs of Technology-specific Climate Policy in the U.S. Passenger Vehicle Sector," Ecological Economics, Elsevier, vol. 137(C), pages 133-147.
    7. Mathias Reynaert, 2021. "Abatement Strategies and the Cost of Environmental Regulation: Emission Standards on the European Car Market," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(1), pages 454-488.
    8. Yeh, Sonia & Burtraw, Dallas & Sterner, Thomas & Greene, David, 2021. "Tradable performance standards in the transportation sector," Energy Economics, Elsevier, vol. 102(C).
    9. Tscharaktschiew, Stefan, 2014. "Shedding light on the appropriateness of the (high) gasoline tax level in Germany," Economics of Transportation, Elsevier, vol. 3(3), pages 189-210.
    10. Greene, David L. & Greenwald, Judith M. & Ciez, Rebecca E., 2020. "U.S. fuel economy and greenhouse gas standards: What have they achieved and what have we learned?," Energy Policy, Elsevier, vol. 146(C).
    11. Chugh, Randy & Cropper, Maureen, 2017. "The welfare effects of fuel conservation policies in a dual-fuel car market: Evidence from India," Journal of Environmental Economics and Management, Elsevier, vol. 86(C), pages 244-261.
    12. Banzhaf, H. Spencer & Kasim, M. Taha, 2019. "Fuel consumption and gasoline prices: The role of assortative matching between households and automobiles," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 1-25.
    13. Lucas W. Davis & Christopher R. Knittel, 2019. "Are Fuel Economy Standards Regressive?," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(S1), pages 37-63.
    14. Shanjun Li & Joshua Linn & Erich Muehlegger, 2014. "Gasoline Taxes and Consumer Behavior," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 302-342, November.
    15. Konishi, Yoshifumi & Kuroda, Sho, 2023. "Why is Japan’s carbon emissions from road transportation declining?," Japan and the World Economy, Elsevier, vol. 66(C).
    16. Whistance, Jarrett & Thompson, Wyatt, 2014. "The role of CAFE standards and alternative-fuel vehicle production credits in U.S. biofuels markets," Energy Policy, Elsevier, vol. 74(C), pages 147-157.
    17. Noel, Lance & Papu Carrone, Andrea & Jensen, Anders Fjendbo & Zarazua de Rubens, Gerardo & Kester, Johannes & Sovacool, Benjamin K., 2019. "Willingness to pay for electric vehicles and vehicle-to-grid applications: A Nordic choice experiment," Energy Economics, Elsevier, vol. 78(C), pages 525-534.
    18. Soren T. Anderson & Ian W. H. Parry & James M. Sallee & Carolyn Fischer, 2011. "Automobile Fuel Economy Standards: Impacts, Efficiency, and Alternatives," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 89-108, Winter.
    19. Sun, Shanxia & Delgado, Michael & Khanna, Neha, 2017. "Hybrid Vehicles and Household Driving Behavior: Implications for Miles Traveled and Gasoline Consumption," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258502, Agricultural and Applied Economics Association.
    20. James M. Sallee, 2011. "The Taxation of Fuel Economy," Tax Policy and the Economy, University of Chicago Press, vol. 25(1), pages 1-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:70:y:2022:i:c:s0928765522000367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.