IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v109y2018icp76-88.html
   My bibliography  Save this article

Reducing Australian motor vehicle greenhouse gas emissions

Author

Listed:
  • Stanley, John
  • Ellison, Richard
  • Loader, Chris
  • Hensher, David

Abstract

Australians are one of the world’s highest per capita emitters of greenhouse gases, yet the country’s target for emissions reductions by 2030 remains modest. This paper looks at policy options for Australian cities to deliver faster emissions reductions than the national commitment level. The main focus is on an accelerated reduction in emissions from urban road transport, through technological improvements and behaviour changes. Targets are proposed for improved emissions intensities, to bring Australia much closer to US and EU performance expectations. A range of behaviour change measures is then tested on Melbourne and Sydney, the Sydney analysis using MetroScan-TI, an integrated evaluation framework, to explore how behaviour changes might enhance emissions outcomes. The potential contribution of public transport is a particular focus. The paper concludes that, with sufficient political will, Australia could reduce its 2030 road transport emissions to 40% below 2005 levels. This is a much larger reduction than the current 26–28% Australian target but is more consistent with longer term pathways to acceptable carbon budgets.

Suggested Citation

  • Stanley, John & Ellison, Richard & Loader, Chris & Hensher, David, 2018. "Reducing Australian motor vehicle greenhouse gas emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 76-88.
  • Handle: RePEc:eee:transa:v:109:y:2018:i:c:p:76-88
    DOI: 10.1016/j.tra.2018.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856417307668
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2018.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Ellison, Richard B. & Ellison, Adrian B. & Greaves, Stephen P. & Sampaio, Breno, 2017. "Electronic ticketing systems as a mechanism for travel behaviour change? Evidence from Sydney’s Opal card," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 80-93.
    3. Hickman, Robin & Ashiru, Olu & Banister, David, 2010. "Transport and climate change: Simulating the options for carbon reduction in London," Transport Policy, Elsevier, vol. 17(2), pages 110-125, March.
    4. Ho, Chinh Q. & Hensher, David A., 2016. "A workplace choice model accounting for spatial competition and agglomeration effects," Journal of Transport Geography, Elsevier, vol. 51(C), pages 193-203.
    5. Peter Stopher & John Stanley, 2014. "Introduction to Transport Policy," Books, Edward Elgar Publishing, number 15102.
    6. Stanley, John K. & Hensher, David A. & Loader, Chris, 2011. "Road transport and climate change: Stepping off the greenhouse gas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1020-1030.
    7. Iankov, Ivan & Taylor, Michael A.P. & Scrafton, Derek, 2017. "Forecasting greenhouse gas emissions performance of the future Australian light vehicle traffic fleet," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 125-146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    2. Xianchun Tan & Tangqi Tu & Baihe Gu & Yuan Zeng & Tianhang Huang & Qianqian Zhang, 2021. "Assessing CO 2 Emissions from Passenger Transport with the Mixed-Use Development Model in Shenzhen International Low-Carbon City," Land, MDPI, vol. 10(2), pages 1-19, February.
    3. Bhardwaj, Chandan & Axsen, Jonn & McCollum, David, 2022. "Which “second-best” climate policies are best? Simulating cost-effective policy mixes for passenger vehicles," Resource and Energy Economics, Elsevier, vol. 70(C).
    4. Jakučionytė-Skodienė, Miglė & Krikštolaitis, Ričardas & Liobikienė, Genovaitė, 2022. "The contribution of changes in climate-friendly behaviour, climate change concern and personal responsibility to household greenhouse gas emissions: Heating/cooling and transport activities in the Eur," Energy, Elsevier, vol. 246(C).
    5. Scott Dwyer & Claudine Moutou & Kriti Nagrath & Joseph Wyndham & Lawrence McIntosh & Dean Chapman, 2021. "An Australian Perspective on Local Government Investment in Electric Vehicle Charging Infrastructure," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    6. Siskos, Pelopidas & Moysoglou, Yannis, 2019. "Assessing the impacts of setting CO2 emission targets on truck manufacturers: A model implementation and application for the EU," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 123-138.
    7. Dianfeng Zhang & Yanlai Li & Yiqun Li & Zifan Shen, 2022. "Service Failure Risk Assessment and Service Improvement of Self-Service Electric Vehicle," Sustainability, MDPI, vol. 14(7), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hickman, Robin & Saxena, Sharad & Banister, David & Ashiru, Olu, 2012. "Examining transport futures with scenario analysis and MCA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 560-575.
    2. Emine Coruh & Faruk Urak & Abdulbaki Bilgic & Steven T. Yen, 2022. "The role of household demographic factors in shaping transportation spending in Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3485-3517, March.
    3. Focas, Caralampo, 2016. "Travel behaviour and CO2 emissions in urban and exurban London and New York," Transport Policy, Elsevier, vol. 46(C), pages 82-91.
    4. Ülengin, Füsun & Işık, Mine & Ekici, Şule Önsel & Özaydın, Özay & Kabak, Özgür & Topçu, Y. İlker, 2018. "Policy developments for the reduction of climate change impacts by the transportation sector," Transport Policy, Elsevier, vol. 61(C), pages 36-50.
    5. Hickman, Robin & Hall, Peter & Banister, David, 2013. "Planning more for sustainable mobility," Journal of Transport Geography, Elsevier, vol. 33(C), pages 210-219.
    6. Keyju Lee & Junjae Chae & Jinwoo Kim, 2019. "A Courier Service with Electric Bicycles in an Urban Area: The Case in Seoul," Sustainability, MDPI, vol. 11(5), pages 1-19, February.
    7. Schwanen, Tim & Banister, David & Anable, Jillian, 2011. "Scientific research about climate change mitigation in transport: A critical review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 993-1006.
    8. Deng, Yiling & Zhao, Pengjun, 2022. "The impact of new metro on travel behavior: Panel analysis using mobile phone data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 46-57.
    9. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    10. John Stanley & Janet Stanley, 2023. "Improving Appraisal Methodology for Land Use Transport Measures to Reduce Risk of Social Exclusion," Sustainability, MDPI, vol. 15(15), pages 1-18, August.
    11. Marie Geraldine Herrmann-Lunecke & Cristhian Figueroa-Martínez & Francisca Parra Huerta & Rodrigo Mora, 2022. "The Disabling City: Older Persons Walking in Central Neighbourhoods of Santiago de Chile," Sustainability, MDPI, vol. 14(17), pages 1-19, September.
    12. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    13. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    14. Van Acker, Veronique & Ho, Loan & Stevens, Larissa & Mulley, Corinne, 2020. "Quantifying the effects of childhood and previous residential experiences on the use of public transport," Journal of Transport Geography, Elsevier, vol. 86(C).
    15. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    16. Singleton, Patrick A. & Park, Keunhyun & Lee, Doo Hong, 2021. "Varying influences of the built environment on daily and hourly pedestrian crossing volumes at signalized intersections estimated from traffic signal controller event data," Journal of Transport Geography, Elsevier, vol. 93(C).
    17. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    18. Liu, Yan & Wang, Siqin & Xie, Bin, 2019. "Evaluating the effects of public transport fare policy change together with built and non-built environment features on ridership: The case in South East Queensland, Australia," Transport Policy, Elsevier, vol. 76(C), pages 78-89.
    19. Regine Gerike & Caroline Koszowski & Bettina Schröter & Ralph Buehler & Paul Schepers & Johannes Weber & Rico Wittwer & Peter Jones, 2021. "Built Environment Determinants of Pedestrian Activities and Their Consideration in Urban Street Design," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    20. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.

    More about this item

    Keywords

    Climate change; Fuel tax; Greenhouse gas emissions; Emissions intensity; Travel behaviour change; Vehicle kilometres travel;
    All these keywords.

    JEL classification:

    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • R42 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government and Private Investment Analysis; Road Maintenance; Transportation Planning
    • R48 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government Pricing and Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:109:y:2018:i:c:p:76-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.