IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v73y2017icp159-177.html
   My bibliography  Save this article

Combining an accelerated deployment of bioenergy and land use strategies: Review and insights for a post-conflict scenario in Colombia

Author

Listed:
  • Gonzalez-Salazar, Miguel Angel
  • Venturini, Mauro
  • Poganietz, Witold-Roger
  • Finkenrath, Matthias
  • L.V. Leal, Manoel Regis

Abstract

After a 50-year armed conflict, negotiations with guerrilla groups are likely to lead to peace agreements in Colombia. A post-conflict context would open up the possibility of modernizing agriculture, improving living standards in rural areas and making good use of the vast natural resources. Sustainable bioenergy combined with improved land use strategies is of particular interest in this context. However, while bioenergy is today the second largest renewable resource after hydropower, no official plans exist for exploiting it in a post-conflict context.

Suggested Citation

  • Gonzalez-Salazar, Miguel Angel & Venturini, Mauro & Poganietz, Witold-Roger & Finkenrath, Matthias & L.V. Leal, Manoel Regis, 2017. "Combining an accelerated deployment of bioenergy and land use strategies: Review and insights for a post-conflict scenario in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 159-177.
  • Handle: RePEc:eee:rensus:v:73:y:2017:i:c:p:159-177
    DOI: 10.1016/j.rser.2017.01.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117300953
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.01.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shahbaz, Muhammad & Rasool, Ghulam & Ahmed, Khalid & Mahalik, Mantu Kumar, 2016. "Considering the effect of biomass energy consumption on economic growth: Fresh evidence from BRICS region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1442-1450.
    2. Rincón, Luis E. & Valencia, Monica J. & Hernández, Valentina & Matallana, Luis G. & Cardona, Carlos A., 2015. "Optimization of the Colombian biodiesel supply chain from oil palm crop based on techno-economical and environmental criteria," Energy Economics, Elsevier, vol. 47(C), pages 154-167.
    3. Heath, John & Binswanger, Hans, 1996. "Natural resource degradation effects of poverty and population growth are largely policy-induced: the case of Colombia," Environment and Development Economics, Cambridge University Press, vol. 1(1), pages 65-84, February.
    4. Arango, Santiago & Larsen, Erik R., 2010. "The environmental paradox in generation: How South America is gradually becoming more dependent on thermal generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2956-2965, December.
    5. Franco, Carlos J. & Zapata, Sebastian & Dyner, Isaac, 2015. "Simulation for assessing the liberalization of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 298-307.
    6. Mónica Parra Torrado, 2011. "Infraestructura y pobreza : el caso de los servicios públicos en Colombia," Working Papers Series. Documentos de Trabajo 9065, Fedesarrollo.
    7. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    8. Koizumi, Tatsuji, 2015. "Biofuels and food security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 829-841.
    9. Duarte, Alexandra E. & Sarache, William A. & Costa, Yasel J., 2014. "A facility-location model for biofuel plants: Applications in the Colombian context," Energy, Elsevier, vol. 72(C), pages 476-483.
    10. Nelson, Gerald C. & Rosegrant, Mark W. & Palazzo, Amanda & Gray, Ian & Ingersoll, Christina & Robertson, Richard & Tokgoz, Simla & Zhu, Tingju & Sulser, Timothy B. & Ringler, Claudia & Msangi, Siwa & , 2010. "Food security, farming, and climate change to 2050: Scenarios, results, policy options," Research reports Gerald C. Nelson, et al., International Food Policy Research Institute (IFPRI).
    11. Cremonez, Paulo André & Feroldi, Michael & Feiden, Armin & Gustavo Teleken, Joel & José Gris, Diego & Dieter, Jonathan & de Rossi, Eduardo & Antonelli, Jhonatas, 2015. "Current scenario and prospects of use of liquid biofuels in South America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 352-362.
    12. Sheinbaum, Claudia & Ruíz, Belizza J. & Ozawa, Leticia, 2011. "Energy consumption and related CO2 emissions in five Latin American countries: Changes from 1990 to 2006 and perspectives," Energy, Elsevier, vol. 36(6), pages 3629-3638.
    13. World Bank, 2016. "World Development Indicators 2016," World Bank Publications - Books, The World Bank Group, number 23969, December.
    14. Monteiro de Carvalho, Carolina & Silveira, Semida & Rovere, Emilio Lèbre La & Iwama, Allan Yu, 2015. "Deforested and degraded land available for the expansion of palm oil for biodiesel in the state of Pará in the Brazilian Amazon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 867-876.
    15. Gerssen-Gondelach, S.J. & Saygin, D. & Wicke, B. & Patel, M.K. & Faaij, A.P.C., 2014. "Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 964-998.
    16. Augusto de la Torre & Pablo Fajnzylber & John Nash, 2010. "Low-Carbon Development : Latin American Responses to Climate Change," World Bank Publications - Books, The World Bank Group, number 2679, December.
    17. Valencia, Monica J. & Cardona, Carlos A., 2014. "The Colombian biofuel supply chains: The assessment of current and promising scenarios based on environmental goals," Energy Policy, Elsevier, vol. 67(C), pages 232-242.
    18. Sorda, Giovanni & Banse, Martin & Kemfert, Claudia, 2010. "An overview of biofuel policies across the world," Energy Policy, Elsevier, vol. 38(11), pages 6977-6988, November.
    19. Gonzalez-Salazar, Miguel Angel & Morini, Mirko & Pinelli, Michele & Spina, Pier Ruggero & Venturini, Mauro & Finkenrath, Matthias & Poganietz, Witold-Roger, 2014. "Methodology for estimating biomass energy potential and its application to Colombia," Applied Energy, Elsevier, vol. 136(C), pages 781-796.
    20. Daniel L. Sanchez & James H. Nelson & Josiah Johnston & Ana Mileva & Daniel M. Kammen, 2015. "Biomass enables the transition to a carbon-negative power system across western North America," Nature Climate Change, Nature, vol. 5(3), pages 230-234, March.
    21. Castro-Nunez, Augusto & Mertz, Ole & Quintero, Marcela, 2016. "Propensity of farmers to conserve forest within REDD+ projects in areas affected by armed-conflict," Forest Policy and Economics, Elsevier, vol. 66(C), pages 22-30.
    22. Silva, Diego & Nakata, Toshihiko, 2009. "Multi-objective assessment of rural electrification in remote areas with poverty considerations," Energy Policy, Elsevier, vol. 37(8), pages 3096-3108, August.
    23. Leal, Manoel Regis L.V. & Horta Nogueira, Luiz A. & Cortez, Luis A.B., 2013. "Land demand for ethanol production," Applied Energy, Elsevier, vol. 102(C), pages 266-271.
    24. Anselm Eisentraut, 2010. "Sustainable Production of Second-Generation Biofuels: Potential and Perspectives in Major Economies and Developing Countries," IEA Energy Papers 2010/1, OECD Publishing.
    25. Castiblanco, Carmenza & Moreno, Alvaro & Etter, Andrés, 2015. "Impact of policies and subsidies in agribusiness: The case of oil palm and biofuels in Colombia," Energy Economics, Elsevier, vol. 49(C), pages 676-686.
    26. Alejandro Gaviria, 2010. "Cambio social en Colombia durante la segunda mitad del siglo XX," Documentos CEDE 7714, Universidad de los Andes, Facultad de Economía, CEDE.
    27. Yáñez Angarita, Edgar Eduardo & Silva Lora, Electo Eduardo & da Costa, Rosélis Ester & Torres, Ednildo Andrade, 2009. "The energy balance in the Palm Oil-Derived Methyl Ester (PME) life cycle for the cases in Brazil and Colombia," Renewable Energy, Elsevier, vol. 34(12), pages 2905-2913.
    28. Rico, Julieta A. Puerto & Mercedes, Sonia S.P. & Sauer, Ildo L., 2010. "Genesis and consolidation of the Brazilian bioethanol: A review of policies and incentive mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1874-1887, September.
    29. Walter, Arnaldo & Dolzan, Paulo & Quilodrán, Oscar & de Oliveira, Janaína G. & da Silva, Cinthia & Piacente, Fabrício & Segerstedt, Anna, 2011. "Sustainability assessment of bio-ethanol production in Brazil considering land use change, GHG emissions and socio-economic aspects," Energy Policy, Elsevier, vol. 39(10), pages 5703-5716, October.
    30. Janssen, Rainer & Rutz, Dominik Damian, 2011. "Sustainability of biofuels in Latin America: Risks and opportunities," Energy Policy, Elsevier, vol. 39(10), pages 5717-5725, October.
    31. Howells, Mark & Rogner, Holger & Strachan, Neil & Heaps, Charles & Huntington, Hillard & Kypreos, Socrates & Hughes, Alison & Silveira, Semida & DeCarolis, Joe & Bazillian, Morgan & Roehrl, Alexander, 2011. "OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development," Energy Policy, Elsevier, vol. 39(10), pages 5850-5870, October.
    32. Gonzalez-Salazar, Miguel Angel & Venturini, Mauro & Poganietz, Witold-Roger & Finkenrath, Matthias & Kirsten, Trevor & Acevedo, Helmer & Spina, Pier Ruggero, 2016. "A general modeling framework to evaluate energy, economy, land-use and GHG emissions nexus for bioenergy exploitation," Applied Energy, Elsevier, vol. 178(C), pages 223-249.
    33. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    34. Gonzalez-Salazar, Miguel Angel & Morini, Mirko & Pinelli, Michele & Spina, Pier Ruggero & Venturini, Mauro & Finkenrath, Matthias & Poganietz, Witold-Roger, 2014. "Methodology for biomass energy potential estimation: Projections of future potential in Colombia," Renewable Energy, Elsevier, vol. 69(C), pages 488-505.
    35. Castanheira, Érica Geraldes & Acevedo, Helmer & Freire, Fausto, 2014. "Greenhouse gas intensity of palm oil produced in Colombia addressing alternative land use change and fertilization scenarios," Applied Energy, Elsevier, vol. 114(C), pages 958-967.
    36. Quijano H, R. & Botero B, S. & Domínguez B, J., 2012. "MODERGIS application: Integrated simulation platform to promote and develop renewable sustainable energy plans, Colombian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5176-5187.
    37. Robert Bailis & Rudi Drigo & Adrian Ghilardi & Omar Masera, 2015. "The carbon footprint of traditional woodfuels," Nature Climate Change, Nature, vol. 5(3), pages 266-272, March.
    38. Theresa Selfa & Carmen Bain & Renata Moreno, 2014. "Depoliticizing land and water “grabs” in Colombia: the limits of Bonsucro certification for enhancing sustainable biofuel practices," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 31(3), pages 455-468, September.
    39. Caspary, Georg, 2009. "Gauging the future competitiveness of renewable energy in Colombia," Energy Economics, Elsevier, vol. 31(3), pages 443-449, May.
    40. Laura J. Sonter & Damian J. Barrett & Chris J. Moran & Britaldo S. Soares-Filho, 2015. "Carbon emissions due to deforestation for the production of charcoal used in Brazil’s steel industry," Nature Climate Change, Nature, vol. 5(4), pages 359-363, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianliang Wang & Yuru Yang & Yongmei Bentley & Xu Geng & Xiaojie Liu, 2018. "Sustainability Assessment of Bioenergy from a Global Perspective: A Review," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    2. Adriana Rincon Montenegro & Marco Sanjuan & Mauricio Carmona, 2019. "Energy Storage Development using Hydrogen and its Potential Application in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 254-268.
    3. Guerin, Turlough F., 2022. "Business model scaling can be used to activate and grow the biogas-to-grid market in Australia to decarbonise hard-to-abate industries: An application of entrepreneurial management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Rocío Rodríguez-Rivero & Isabel Ortiz-Marcos & Javier Romero & Luis Ballesteros-Sánchez, 2020. "Finding the Links between Risk Management and Project Success: Evidence from International Development Projects in Colombia," Sustainability, MDPI, vol. 12(21), pages 1-19, November.
    5. Jarosław Brodny & Magdalena Tutak & Peter Bindzár, 2021. "Assessing the Level of Renewable Energy Development in the European Union Member States. A 10-Year Perspective," Energies, MDPI, vol. 14(13), pages 1-38, June.
    6. Palacio-Ciro, Santiago & Vasco-Correa, Carlos Andrés, 2020. "Biofuels policy in Colombia: A reconfiguration to the sugar and palm sectors?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
    8. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Jiang, 2020. "Optimization of sustainable bioenergy production considering energy-food-water-land nexus and livestock manure under uncertainty," Agricultural Systems, Elsevier, vol. 184(C).
    9. Arcigni, Francesco & Friso, Riccardo & Collu, Maurizio & Venturini, Mauro, 2019. "Harmonized and systematic assessment of microalgae energy potential for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 614-624.
    10. Masum, Md Farhad Hossain & Dwivedi, Puneet & De La Torre, Rafael, 2021. "Assessing economic and environmental feasibility of wood-based electricity generation in South America: A case study from Colombia," Forest Policy and Economics, Elsevier, vol. 124(C).
    11. Luis Obregon & Guillermo Valencia & Jorge Duarte, 2019. "Study on the Applicability of Sustainable Development Policies in Electricity Generation Systems in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 492-502.
    12. Azevedo, Susana Garrido & Sequeira, Tiago & Santos, Marcelo & Mendes, Luis, 2019. "Biomass-related sustainability: A review of the literature and interpretive structural modeling," Energy, Elsevier, vol. 171(C), pages 1107-1125.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonzalez-Salazar, Miguel Angel & Venturini, Mauro & Poganietz, Witold-Roger & Finkenrath, Matthias & Kirsten, Trevor & Acevedo, Helmer & Spina, Pier Ruggero, 2016. "Development of a technology roadmap for bioenergy exploitation including biofuels, waste-to-energy and power generation & CHP," Applied Energy, Elsevier, vol. 180(C), pages 338-352.
    2. Gonzalez-Salazar, Miguel Angel & Venturini, Mauro & Poganietz, Witold-Roger & Finkenrath, Matthias & Kirsten, Trevor & Acevedo, Helmer & Spina, Pier Ruggero, 2016. "A general modeling framework to evaluate energy, economy, land-use and GHG emissions nexus for bioenergy exploitation," Applied Energy, Elsevier, vol. 178(C), pages 223-249.
    3. Palacio-Ciro, Santiago & Vasco-Correa, Carlos Andrés, 2020. "Biofuels policy in Colombia: A reconfiguration to the sugar and palm sectors?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Mayer, Flávio Dias & Feris, Liliana Amaral & Marcilio, Nilson Romeu & Hoffmann, Ronaldo, 2015. "Why small-scale fuel ethanol production in Brazil does not take off?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 687-701.
    5. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
    6. Julia Szulecka, 2019. "Towards Sustainable Wood-Based Energy: Evaluation and Strategies for Mainstreaming Sustainability in the Sector," Sustainability, MDPI, vol. 11(2), pages 1-21, January.
    7. dos Santos Alves, Camila Elisa & Belarmino, Luiz Clovis & Padula, Antonio Domingos, 2017. "Feedstock diversification for biodiesel production in Brazil: Using the Policy Analysis Matrix (PAM) to evaluate the impact of the PNPB and the economic competitiveness of alternative oilseeds," Energy Policy, Elsevier, vol. 109(C), pages 297-309.
    8. Rosso-Cerón, A.M. & León-Cardona, D.F. & Kafarov, V., 2021. "Soft computing tool for aiding the integration of hybrid sustainable renewable energy systems, case of Putumayo, Colombia," Renewable Energy, Elsevier, vol. 174(C), pages 616-634.
    9. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    10. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    11. Wongwuttanasatian, Tanakorn & Jookjantra, Kittichai, 2020. "Effect of dual-frequency pulsed ultrasonic excitation and catalyst size for biodiesel production," Renewable Energy, Elsevier, vol. 152(C), pages 1220-1226.
    12. Malerba, Daniele, 2020. "Poverty alleviation and local environmental degradation: An empirical analysis in Colombia," World Development, Elsevier, vol. 127(C).
    13. Çağatay, Selim & Taşdoğan, Celal & Özeş, Reyhan, 2017. "Analysing the impact of targeted bio-ethanol blending ratio in Turkey," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 6(2), September.
    14. Iribarren, Diego & Martín-Gamboa, Mario & Navas-Anguita, Zaira & García-Gusano, Diego & Dufour, Javier, 2020. "Influence of climate change externalities on the sustainability-oriented prioritisation of prospective energy scenarios," Energy, Elsevier, vol. 196(C).
    15. Johanna Choumert & Pascale Combes Motel & Charlain Guegang Djimeli, 2017. "The biofuel-development nexus: A meta-analysis," CERDI Working papers halshs-01512678, HAL.
    16. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Choumert Nkolo, Johanna & Combes Motel, Pascale & Guegang Djimeli, Charlain, 2018. "Income-generating Effects of Biofuel Policies: A Meta-analysis of the CGE Literature," Ecological Economics, Elsevier, vol. 147(C), pages 230-242.
    18. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    19. Arcigni, Francesco & Friso, Riccardo & Collu, Maurizio & Venturini, Mauro, 2019. "Harmonized and systematic assessment of microalgae energy potential for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 614-624.
    20. Espinoza Pérez, Andrea Teresa & Camargo, Mauricio & Narváez Rincón, Paulo César & Alfaro Marchant, Miguel, 2017. "Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 350-359.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:73:y:2017:i:c:p:159-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.