IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v130y2020ics1364032120302458.html
   My bibliography  Save this article

Low carbon innovations for mobility, food, homes and energy: A synthesis of consumer attributes

Author

Listed:
  • Pettifor, Hazel
  • Wilson, Charlie

Abstract

Novel consumer goods and services in mobility, food, homes and energy domains are needed to help mitigate climate change. Appealing attributes of low carbon innovations accelerate their diffusion out of early-adopting segments into the mass market [1,2]bib1. In this paper we synthesise insights on the attributes of low carbon consumer innovations across multiple domains. Using a directed literature review and content analysis, guided by Levitt's hierarchical ring model which distinguishes core from non-core attributes, we identified over 170 relevant studies across mobility, food, homes and energy domains. We extracted a set of 16 attributes generalisable to low carbon innovations across multiple domains of consumption, with the exception of energy innovations which appeal on a reduced set of attributes. Using multi-dimensional scaling techniques we found the appeal of non-core attributes varies between domains but core attributes are consistent across domains in line with Levitt's theory. As examples, low-carbon consumer innovations within mobility and food domains share non-core attributes related to improved private and public health, whereas innovations within food and home domains share non-core attributes related to technology acceptance and usability. We develop these findings to argue that many low carbon consumer innovations are currently positioned to appeal to a distinctive but limited group of early adopters who value novelty and climate benefits. To achieve mass market diffusion, product and service development, policy interventions, and communication strategies should focus on enhancing a wider set of attributes to broaden consumer appeal.

Suggested Citation

  • Pettifor, Hazel & Wilson, Charlie, 2020. "Low carbon innovations for mobility, food, homes and energy: A synthesis of consumer attributes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
  • Handle: RePEc:eee:rensus:v:130:y:2020:i:c:s1364032120302458
    DOI: 10.1016/j.rser.2020.109954
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120302458
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.109954?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shaheen, Susan & Sperling, Daniel & Wagner, Conrad, 1998. "Carsharing in Europe and North American: Past, Present, and Future," University of California Transportation Center, Working Papers qt4gx4m05b, University of California Transportation Center.
    2. Jones, Tim & Harms, Lucas & Heinen, Eva, 2016. "Motives, perceptions and experiences of electric bicycle owners and implications for health, wellbeing and mobility," Journal of Transport Geography, Elsevier, vol. 53(C), pages 41-49.
    3. Schaefers, Tobias, 2013. "Exploring carsharing usage motives: A hierarchical means-end chain analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 69-77.
    4. Enoch, Marcus P. & Taylor, Jo, 2006. "A worldwide review of support mechanisms for car clubs," Transport Policy, Elsevier, vol. 13(5), pages 434-443, September.
    5. Michelini, Laura & Principato, Ludovica & Iasevoli, Gennaro, 2018. "Understanding Food Sharing Models to Tackle Sustainability Challenges," Ecological Economics, Elsevier, vol. 145(C), pages 205-217.
    6. Roby, Helen, 2014. "Understanding the development of business travel policies: Reducing business travel, motivations and barriers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 20-35.
    7. Marikyan, Davit & Papagiannidis, Savvas & Alamanos, Eleftherios, 2019. "A systematic review of the smart home literature: A user perspective," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 139-154.
    8. Sáez-Martı´, Maria & Zenou, Yves, 2012. "Cultural transmission and discrimination," Journal of Urban Economics, Elsevier, vol. 72(2), pages 137-146.
    9. Katrina Jessoe & David Rapson, 2014. "Knowledge Is (Less) Power: Experimental Evidence from Residential Energy Use," American Economic Review, American Economic Association, vol. 104(4), pages 1417-1438, April.
    10. Huang, Rong & Sarigöllü, Emine, 2008. "Assessing satisfaction with core and secondary attributes," Journal of Business Research, Elsevier, vol. 61(9), pages 942-949, September.
    11. Schubert, Christian, 2017. "Green nudges: Do they work? Are they ethical?," Ecological Economics, Elsevier, vol. 132(C), pages 329-342.
    12. Sangho Choo & Patricia Mokhtarian & Ilan Salomon, 2005. "Does telecommuting reduce vehicle-miles traveled? An aggregate time series analysis for the U.S," Transportation, Springer, vol. 32(1), pages 37-64, January.
    13. Lee, Kyootai & Khan, Shaji & Mirchandani, Dinesh, 2013. "Hierarchical effects of product attributes on actualized innovativeness in the context of high-tech products," Journal of Business Research, Elsevier, vol. 66(12), pages 2634-2641.
    14. Rayle, Lisa & Dai, Danielle & Chan, Nelson & Cervero, Robert & Shaheen, Susan PhD, 2016. "Just A Better Taxi? A Survey-Based Comparison of Taxis, Transit, and Ridesourcing Services in San Francisco," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt60v8r346, Institute of Transportation Studies, UC Berkeley.
    15. Simon Haenni & Guilherme Lichand, 2020. "Harming to signal: child marriage vs. public donations in Malawi," IEW - Working Papers 348, Institute for Empirical Research in Economics - University of Zurich, revised Mar 2021.
    16. Wilhelms, Mark-Philipp & Henkel, Sven & Falk, Tomas, 2017. "To earn is not enough: A means-end analysis to uncover peer-providers' participation motives in peer-to-peer carsharing," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 38-47.
    17. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    18. Stiglic, Mitja & Agatz, Niels & Savelsbergh, Martin & Gradisar, Mirko, 2016. "Making dynamic ride-sharing work: The impact of driver and rider flexibility," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 190-207.
    19. Juho Hamari & Mimmi Sjöklint & Antti Ukkonen, 2016. "The sharing economy: Why people participate in collaborative consumption," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(9), pages 2047-2059, September.
    20. Catherine Cherry & Kate Scott & John Barrett & Nick Pidgeon, 2018. "Public acceptance of resource-efficiency strategies to mitigate climate change," Nature Climate Change, Nature, vol. 8(11), pages 1007-1012, November.
    21. Mikael Jensen, 2009. "Lifestyle: suggesting mechanisms and a definition from a cognitive science perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 11(1), pages 215-228, February.
    22. Cairns, S. & Behrendt, F. & Raffo, D. & Beaumont, C. & Kiefer, C., 2017. "Electrically-assisted bikes: Potential impacts on travel behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 327-342.
    23. Thomas Morstyn & Niall Farrell & Sarah J. Darby & Malcolm D. McCulloch, 2018. "Using peer-to-peer energy-trading platforms to incentivize prosumers to form federated power plants," Nature Energy, Nature, vol. 3(2), pages 94-101, February.
    24. Shaheen, Susan & Sperling, Daniel & Wagner, Conrad, 1998. "Carsharing in Europe and North American: Past, Present, and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4gx4m05b, Institute of Transportation Studies, UC Berkeley.
    25. Grebitus, Carola & Printezis, Iryna & Printezis, Antonios, 2017. "Relationship between Consumer Behavior and Success of Urban Agriculture," Ecological Economics, Elsevier, vol. 136(C), pages 189-200.
    26. Han, Liu & Wang, Shanyong & Zhao, Dingtao & Li, Jun, 2017. "The intention to adopt electric vehicles: Driven by functional and non-functional values," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 185-197.
    27. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    28. Prettenthaler, Franz E. & Steininger, Karl W., 1999. "From ownership to service use lifestyle: the potential of car sharing," Ecological Economics, Elsevier, vol. 28(3), pages 443-453, March.
    29. Specht, Kathrin & Sanyé-Mengual, Esther, 2017. "Risks in urban rooftop agriculture: Assessing stakeholders’ perceptions to ensure efficient policymaking," Environmental Science & Policy, Elsevier, vol. 69(C), pages 13-21.
    30. Rayle, Lisa & Dai, Danielle & Chan, Nelson & Cervero, Robert & Shaheen, Susan, 2016. "Just a better taxi? A survey-based comparison of taxis, transit, and ridesourcing services in San Francisco," Transport Policy, Elsevier, vol. 45(C), pages 168-178.
    31. Prieto, Marc & Baltas, George & Stan, Valentina, 2017. "Car sharing adoption intention in urban areas: What are the key sociodemographic drivers?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 218-227.
    32. Sovacool, Benjamin K. & Axsen, Jonn, 2018. "Functional, symbolic and societal frames for automobility: Implications for sustainability transitions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 730-746.
    33. Naber, Rolf & Raven, Rob & Kouw, Matthijs & Dassen, Ton, 2017. "Scaling up sustainable energy innovations," Energy Policy, Elsevier, vol. 110(C), pages 342-354.
    34. Balta-Ozkan, Nazmiye & Davidson, Rosemary & Bicket, Martha & Whitmarsh, Lorraine, 2013. "Social barriers to the adoption of smart homes," Energy Policy, Elsevier, vol. 63(C), pages 363-374.
    35. Fleura Bardhi & Giana M. Eckhardt, 2012. "Access-Based Consumption: The Case of Car Sharing," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 39(4), pages 881-898.
    36. Davison, Lisa & Enoch, Marcus & Ryley, Tim & Quddus, Mohammed & Wang, Chao, 2014. "A survey of Demand Responsive Transport in Great Britain," Transport Policy, Elsevier, vol. 31(C), pages 47-54.
    37. Buchanan, Kathryn & Russo, Riccardo & Anderson, Ben, 2015. "The question of energy reduction: The problem(s) with feedback," Energy Policy, Elsevier, vol. 77(C), pages 89-96.
    38. Kurz, Verena, 2018. "Nudging to reduce meat consumption: Immediate and persistent effects of an intervention at a university restaurant," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 317-341.
    39. O'Keefe, Paul & Caulfield, Brian & Brazil, William & White, Peter, 2016. "The impacts of telecommuting in Dublin," Research in Transportation Economics, Elsevier, vol. 57(C), pages 13-20.
    40. Furuhata, Masabumi & Dessouky, Maged & Ordóñez, Fernando & Brunet, Marc-Etienne & Wang, Xiaoqing & Koenig, Sven, 2013. "Ridesharing: The state-of-the-art and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 28-46.
    41. Rogers, Everett M, 1976. "New Product Adoption and Diffusion," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 2(4), pages 290-301, March.
    42. White, Lee V. & Sintov, Nicole D., 2017. "You are what you drive: Environmentalist and social innovator symbolism drives electric vehicle adoption intentions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 94-113.
    43. Wolf, Angelika & Seebauer, Sebastian, 2014. "Technology adoption of electric bicycles: A survey among early adopters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 196-211.
    44. J. Kruskal, 1964. "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 29(1), pages 1-27, March.
    45. Zhang, Yongping & Mi, Zhifu, 2018. "Environmental benefits of bike sharing: A big data-based analysis," Applied Energy, Elsevier, vol. 220(C), pages 296-301.
    46. Geske, Joachim & Schumann, Diana, 2018. "Willing to participate in vehicle-to-grid (V2G)? Why not!," Energy Policy, Elsevier, vol. 120(C), pages 392-401.
    47. Brechan, Inge, 2006. "The different effect of primary and secondary product attributes on customer satisfaction," Journal of Economic Psychology, Elsevier, vol. 27(3), pages 441-458, June.
    48. Shin, Jungwoo & Park, Yuri & Lee, Daeho, 2018. "Who will be smart home users? An analysis of adoption and diffusion of smart homes," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 246-253.
    49. Schuitema, Geertje & Anable, Jillian & Skippon, Stephen & Kinnear, Neale, 2013. "The role of instrumental, hedonic and symbolic attributes in the intention to adopt electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 39-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Xiu & Long, Ruyin & Wu, Fan & Geng, Jichao & Yang, Jiameng, 2023. "How social interaction shapes habitual and occasional low-carbon consumption behaviors: Evidence from ten cities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loes M. Derikx & Dea van Lierop, 2021. "Intentions to Participate in Carsharing: The Role of Self- and Social Identity," Sustainability, MDPI, vol. 13(5), pages 1-31, February.
    2. Sovacool, Benjamin K. & Abrahamse, Wokje & Zhang, Long & Ren, Jingzheng, 2019. "Pleasure or profit? Surveying the purchasing intentions of potential electric vehicle adopters in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 69-81.
    3. Virginie Boutueil, 2018. "New Mobility Services," Post-Print hal-01981277, HAL.
    4. Lucia Rotaris, 2021. "Carsharing Services in Italy: Trends and Innovations," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    5. Punel, Aymeric & Stathopoulos, Amanda, 2017. "Modeling the acceptability of crowdsourced goods deliveries: Role of context and experience effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 18-38.
    6. Thurner, Thomas & Fursov, Konstantin & Nefedova, Alena, 2022. "Early adopters of new transportation technologies: Attitudes of Russia’s population towards car sharing, the electric car and autonomous driving," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 403-417.
    7. Sun, Yanshuo & Chen, Zhi-Long & Zhang, Lei, 2020. "Nonprofit peer-to-peer ridesharing optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    8. Khalek, Sk Abu & Chakraborty, Anirban, 2023. "Access or collaboration? A typology of sharing economy," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    9. Timm Teubner & Christoph Flath, 2015. "The Economics of Multi-Hop Ride Sharing," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 57(5), pages 311-324, October.
    10. Ransford A. Acheampong & Alhassan Siiba, 2020. "Modelling the determinants of car-sharing adoption intentions among young adults: the role of attitude, perceived benefits, travel expectations and socio-demographic factors," Transportation, Springer, vol. 47(5), pages 2557-2580, October.
    11. Khalek, Sk Abu & Chakraborty, Anirban, 2022. "“I like to use but do not wish to own†: Exploring the role of de-ownership orientation in the adoption of access-based services," Journal of Retailing and Consumer Services, Elsevier, vol. 67(C).
    12. Tom Erik Julsrud & Tanu Priya Uteng, 2021. "Trust and Sharing in Online Environments: A Comparative Study of Different Groups of Norwegian Car Sharers," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    13. Giovanna Magnani & Beatrice Re, 2020. "Lived experiences about car sharing in young adults: Emerging paradoxes," Italian Journal of Marketing, Springer, vol. 2020(2), pages 207-229, September.
    14. Merfeld, Katrin & Wilhelms, Mark-Philipp & Henkel, Sven & Kreutzer, Karin, 2019. "Carsharing with shared autonomous vehicles: Uncovering drivers, barriers and future developments – A four-stage Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 66-81.
    15. Savvas Papagiannidis & Dinara Davlembayeva, 2022. "Bringing Smart Home Technology to Peer-to-Peer Accommodation: Exploring the Drivers of Intention to Stay in Smart Accommodation," Information Systems Frontiers, Springer, vol. 24(4), pages 1189-1208, August.
    16. Giovanna Magnani & Beatrice Re, 0. "Lived experiences about car sharing in young adults: Emerging paradoxes," Italian Journal of Marketing, Springer, vol. 0, pages 1-23.
    17. Kim, Moon-Koo & Oh, Jeesun & Park, Jong-Hyun & Joo, Changlim, 2018. "Perceived value and adoption intention for electric vehicles in Korea: Moderating effects of environmental traits and government supports," Energy, Elsevier, vol. 159(C), pages 799-809.
    18. Huang, Youlin & Qian, Lixian, 2021. "Consumer adoption of electric vehicles in alternative business models," Energy Policy, Elsevier, vol. 155(C).
    19. Yu Wang & Shanyong Wang & Jing Wang & Jiuchang Wei & Chenglin Wang, 2020. "An empirical study of consumers’ intention to use ride-sharing services: using an extended technology acceptance model," Transportation, Springer, vol. 47(1), pages 397-415, February.
    20. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:130:y:2020:i:c:s1364032120302458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.